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Figure 1: Visualization of randomly sampled histology im-
ages.

Abstract

The application of computer vision to biomedical imag-
ing holds many promises, from biomedical research to clin-
ical diagnosis. With the appropriate dataset, deep learn-
ing can in principle detect disease at rates comparable
to a physician’s diagnosis if not better. However, large
quantities of high quality data are often challenging to ob-
tain in the biomedical space. In this project, we explore
whether image synthesis with generative adversarial net-
works (GANs) can address this challenge. Specifically, we
evaluate the effectiveness of deep convolutional GAN (DC-
GAN) and cycle adversarial network (CCAN) in augment-
ing training data to improve breast cancer classification.
Additionally, we also report heuristics that improve visual
similarity between generated and real images. Overall, we
found DCGAN to be the most effective method to improve

breast cancer classification accuracy. Accuracy and pre-
cision improved by around 5% and 12% respectively as a
result of data augmentation. However, recall decreased by
nearly 15%. Our work shows that it is possible to use im-
age synthesis with GANs to improve certain performance
metrics, but also highlights the many challenges associated
with this task.

1. Introduction
Medical imaging is the technique and process of creating

visual representations of the interior of a body for clinical
analysis and medical intervention, as well as visual repre-
sentations of the function of organs or tissues. Examples in-
clude X-ray radiography, magnetic resonance imaging, and
microscopy [6].

Since the analysis of biomedical images involves pattern
recognition, efforts have already been made in using ma-
chine learning as a way to advance computer-aided diag-
nosis [14]. However, challenges in this application include
availability and cost of data. For example, it costs time for
pathologists to manually label large quantities of images.
Conflicts of interest prevent clinics and hospitals from shar-
ing data with each other. In this paper, we investigate the
utility of data augmentation techniques for disease diagno-
sis in the context of breast histology images.

We evaluate the effectiveness of data augmentation
methods to improve cancer classification performance. We
explore whether the generative adversarial network (GAN)
can synthesize images to improve classification perfor-
mance [2]. The two types of GANs we will work with are
Cycle Consistent Adversarial Networks (CCAN) and Deep
Convolutional Generative Adversarial Networks (DCGAN)
[10, 16].

2. Related Works
The applications of computer vision to biomedical imag-

ing is an active area of interdisciplinary research [11].
Successful deep learning applications often require large
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datasets that capture population variation. However, there
exist challenges in collecting large quantities of well-
annotated, high-quality biomedical images. These chal-
lenges include human labor by the medical professional
community in data collection and data sharing due to le-
gal concerns and/or conflicts of interest. Thus, successful
image synthesis that retains or captures biomedical signal
could greatly address these challenges. GANs have been
lightly explored as a method for medical image synthesis.
We discuss two applications in computed tomography (CT)
synthesis from magnetic resonance imaging and retinal ves-
sel segmentation synthesis.

CT is an non-invasive imaging technique that enables
visualization of cross sections of a human body. It has
applications in preventive medicine and disease screening.
However, CT exposes patients to radiation which can cause
harmful side effects. Magnetic resonance imaging (MRI) is
the preferred alternative, as patients are not exposed to any
radiation. Context-aware GANs have shown compelling
qualitative performance on synthesizing CT scans based on
MRIs [7], notably outperforming all other state-of-the-art
methods such as Atlas, SR and SRF+.

Another study attempted to generate synthetic retinal
vessel segmentation data through a dual generative adver-
sarial approach. Large amounts of clinical data remain pri-
vate and thus restricted from public access. The motivation
behind this study was to create synthetic images generated
from real, private datasets in order to increase the amount of
publicly available research data. Using retinal vessel seg-
mentation data from the DRIVE database, the dual gener-
ative adversarial approach is able to produce realistic, syn-
thetic retinal vessel segmentation data [3]. Artifacts in syn-
thesized images have been reported to be a challenge in the
dual generative adversarial approach. We encountered sim-
ilar challenges with artifacts in the application of DCGANs,
and in this project we investigate ways to address these chal-
lenges [10].

In this project, we also explore image-to-image mapping
with cycle consistent GANs. Cycle consistent GANs have
demonstrated impressive results on image-to-image trans-
lation, and we explore whether cycle consistent GANs can
successfully translate a non-cancerous image to a cancer-
ous image and vice versa for the purpose of data augmenta-
tion [16].

3. Dataset
Our dataset from Kaggle consists of 5,547 breast histol-

ogy images of size 50× 50× 3, of which 2,788 images are
labeled as invasive ductal carcinoma (IDC) and 2,759 im-
ages are labeled as non-IDC [5]. IDC is the most common
form of breast cancer.

We use a 67-33 split rule on the 5,547 images to form
training and validation sets. A fixed seed was used to gen-

erate these training and validation sets. After splitting, the
training set contained 1,819 non-IDC images and 1,897 IDC
images, while the validation set contained 940 non-IDC im-
ages and 891 IDC images. The same validation set was used
across all evaluations to establish a baseline for comparison.

(a) Non-Invasive Ducctal
Carcinoma

(b) Invasive Ducctal Carci-
noma

Figure 2: Classification of Breast Cancer Histology

4. Methods
We generate synthetic images by feeding the training

dataset as an input to GANs. In the process, we address
challenges encountered in training GANs and different ap-
proaches we investigated to resolve these challenges. Af-
terwards, for each set of synthetic images generated by an
image synthesis method, we will evaluate its effectiveness
in increasing test classification performance on a neural
network trained for binary classification of cancer vs non-
cancer. Computation was provided by EC2 of Amazon Web
Services.

4.1. Cancer Classification with Transfer Learning

Training a deep convolutional neural network from
scratch would require significantly more images than avail-
able in our dataset, which would be extremely costly in the
context of histology as experts would need to label millions
of images for this method to be effective. Alternatively,
transfer learning is a method that utilizes the pre-trained
weights of convolutional layers and then retrains the final
fully connected layer to create a class specific classifier.

Transfer learning on Resnet-18 was used as a baseline for
comparison [4] [9]. The convolutional layers in Resnet are
able to learn comprehensive and informative features that
are effective in image classification. We chose to use these
convolutional layers as a feature extractor for our histology
dataset and use transfer learning to retrain the last fully con-
nected layer to create an IDC classifier. Pretrained weights
from PyTorch were used and the final layer was retrained
to predict whether a given image was IDC or non-IDC. A
variety of image perturbation methods were used, including
rotation, horizontal and vertical flips, and random noise to
introduce robustness to the model. Relative to not using im-



age perturbations, including image perturbations had little
impact on accuracy, precision and recall.

4.2. Cycle Consistent Adversarial Networks

CCANs have achieved compelling results for many
image-to-image translation tasks, such as zebras-to-horses,
summer-to-winter, and painting and photo styles [16]. An
important characteristic of CCANs is that they can be
trained on two sets of images that aren’t directly related.
For images of horses and zebras, a ”pair” of training sam-
ples need not have the same background or pose. For our
histology images, a ”pair” of training samples from IDC
and non-IDC need not share the same histology. However,
CCANs perform best when the unpaired images share simi-
lar visual content [16], suggesting that not all pairings will
produce adequate results.

(a) Real Non-IDC Image 1 (b) Fake IDC Image 1

(c) Real Non-IDC Image 2 (d) Fake IDC Image 2

(e) Real IDC Image 3 (f) Fake Non-IDC Image 3

(g) Real IDC Image 4 (h) Fake Non-IDC Image 4

Figure 3: Results from CCAN

In the scenario of binary IDC classification, our assump-

tion is that there is a mapping from non-IDC images to and
from IDC images. In other words, we expect that given
a real, non-IDC histology we are able to predict what that
same histology would look like if it were IDC. Similarly,
given a real, IDC histology we should be be able to predict
the synthetic non-IDC histology.

Using CCANs in this context allows us to augment the
dataset with IDC versions of non-IDC images and vice
versa. Alternatively, if we do not reverse the labels when ap-
plying CCAN’s, then this augmentation tests the robustness
of our model as healthy looking synthetic IDC histologies
are injected into the mix. We trained a CCAN on unpaired
images of non-IDC and IDC images from the training set
and then applied the trained CCAN to images in the train-
ing set. The CCAN was trained for 25 epochs and the cycle
consistency loss converged at 0.002 after only a few epochs.
This produced a set of synthetic training images that were
the fake opposites of the real training images. During trans-
fer learning, we tested combinations of real data only, syn-
thetic data only and combined data.

In Figure 3, we visualize the results of applying the
trained CCAN to the training set. Figures 3a, 3c are real,
non-IDC images and Figures 3b, 3d are the synthesized,
IDC images corresponding to the non-IDC images. Simi-
larly, Figures 3e, 3g are real, IDC images and Figures 3f ,
3h are the synthesized, non-IDC images corresponding to
the non-IDC images. These results seem promising to non-
experts.

We see that the CCAN is able to learn the features of
non-IDC and IDC histologies and generate synthetic his-
tologies given a real histology. Notably, the fake IDC im-
ages are darker and more purple in color than the real non-
IDC images, and the fake non-IDC images are lighter in
color and more pink than the real IDC images. However,
Figures 3g, 3h also demonstrates that the CCAN does not
always significantly alter the image–the synthesized image
is fairly similar to the original image. This highlights a po-
tential issue: if the labels of the synthesized images are op-
posite to the source image and if the synthesized image is
similar to the source image, our combined dataset may con-
tain conflicting labels for similar images. We will further
analyze this caveat in the results section. Still, the major-
ity of results are interesting. Of course, histology is much
more complicated than a simple shift in hue, but to a non-
expert eye the synthesized IDC images seem ”more can-
cerous” than the real non-IDC images and the synthesized
non-IDC images seem ”less cancerous” than the real IDC
images.

4.3. Clustering of Histology Images

GANs can produce conflated images that do not belong
to a particular class when trained on complex and diverse
datasets [1]. As Figure 1 shows, our histology images are



diverse in hue, texture and morphology.
It appears that there is no single prototypical example of

an IDC histology image, just as there is no single prototypi-
cal example of a non-IDC histology image. The differences
between members of IDC histology images or non-IDC his-
tology images could be significant enough to produce con-
flation in generated histology images.

To minimize the probability that poorly generated im-
ages are due to over-diversification of our dataset, we de-
cided to run DCGAN on images that cluster together. We
performed feature extraction with Scale Invariant Feature
Transform (SIFT), an algorithm that allows us to generate
a list of meaningful features from raw pixel data. We then
used a Bag-of-Words model to create a histogram of fea-
tures for each image and used the histogram as a feature
vector representing the image. Running k-means on these
feature vectors allowed us to generate clusters of each im-
ages which became the datasets we used to test out differ-
ent GANs. The parameter k in k-means was selected via
manual inspection of images in clusters. Empirically, we
found that choosing k = 4 provided a good balance be-
tween having large clusters and having high degrees of sim-
ilarity within clusters.

4.4. DCGAN

Deep Convolutional GAN (DCGAN) is an extension of
the original GAN that provides improved training stability
and ability to learn a hierarchy of representations from ob-
ject parts to scenes in both the generator and discriminator.
Changes to the original GAN include

• Introducing transpose convolution to the generator

• Using batch normalization in both the generator and
discriminator

• Use ReLU activation in generator for all layers except
for the output, which uses Tanh

• Use LeakyReLU activation in the discriminator for all
layers.

Further details on DCGANs are described in the original
paper [10]. Our DCGAN software is based off the Ten-
sorFlow DCGAN implementation by Taehoon Kim, which
extends the architecture in the original DCGAN paper by
updating the generator network twice for each discrimina-
tor update [13].

We first tested out this implementation on a randomly
chosen 10% of bedroom images from the LSUN dataset,
totaling 303,125 images [15]. Figure 4 visualizes the gener-
ated images and the implementation was deemed a success
before moving forward with the histology dataset.

Figure 4: Visualization of generated images from DCGAN
trained on LSUN bedroom dataset.

We tested our DCGAN on cancer images from only one
cluster of histology images to minimize the probability that
DCGAN may perform poorly due to large variation among
input images. The cluster that was randomly chosen con-
tained 404 images. We tested a total of three DCGAN ver-
sions, with one of the three being the original implemen-
tation, with the goal of generating believable histology im-
ages. In addition, we monitored discriminator and generator
loss to ensure training stability and convergence. All results
were compared after exactly 25 epochs. Figure 5 shows the
results from all 3 DCGANs.

The first version, which we call DCGAN1, is the origi-
nal DCGAN implementation. We can see in Figure 5a that
the generated images were both low resolution and have
”checkerboard artifacts”, the square tiling pattern repeated
across the image. The second version, which we call DC-
GAN2, implemented tips suggested and aggregated online
[12]. Specifically, we implemented label smoothing and
added Gaussian noise from N(0, 0.2) to images fed into
the discriminator. The label smoothing we implemented in-
volves multiplying labels of real images by 0.9 in training
the discriminator. From Figure 5c, although the checker-
board artifacts were dampened, finer, visible artifacts re-
mained. Furthermore, the resolution of the generated im-
ages remained low.

The final version, which we call DCGAN3, changed
stride lengths in transpose deconvolution to 1. This ver-
sion came from the observation that checkerboard artifacts
could arise when the kernel size is not divisible by the stride
length. This could cause regions of the feature maps to sys-
temically receive output from a kernel multiple times, cre-
ating checkerboard artifacts [8]. We observe from Figure
5e that DCGAN3 was the most effective in minimizing ar-



tifacts and maximizing resolution.

(a) DCGAN1 images. (b) DCGAN1 losses.

(c) DCGAN2 images. (d) DCGAN2 losses.

(e) DCGAN3 images. (f) DCGAN3 losses.

Figure 5: Results from three DCGAN versions.

We observe from the losses shown in Figures 5b, 5d, 5f
that DCGAN does exhibit training stability because the gen-
erator and discriminator losses appear to be converging. Of
the three DCGANs, DCGAN3 appear to have the least vari-
ance in training loss, providing further support that setting
strides to 1 is the correct setting for this breast histology
dataset.

The set of cancer and non-cancerous histology im-
ages that comprised the final DCGAN-generated synthetic
dataset was generated from DCGAN3 trained for 50 epochs
on the training set for the cancer prediction classifier. Visu-
alization results are shown in Figure 6.

Compared to Figure 5e, it is observed that additional
epochs improved the resolution of the generated images.
As with before, the discriminator and generator losses re-
mained stable throughout training and appeared to be con-
verging.

(a) DCGAN3 cancer im-
ages. (b) DCGAN3 cancer losses.

(c) DCGAN3 normal im-
ages.

(d) DCGAN3 normal
losses.

Figure 6: DCGAN3 synthetic dataset.

5. Results
Table 1 compares breast cancer classification perfor-

mance before and after data augmentation with synthesized
images. Classification accuracy was most significantly im-
proved after augmenting the training set with synthesized
images from DCGAN3. Augmenting the training set with
synthesized images from CCAN only resulted in a minor
gain in classification accuracy. Data augmentation with DC-
GAN improved the precision by ∼ 12% but decreased the
recall by ∼ 15%. With CCAN, the precision improved by
∼ 3% and recall dropped by ∼ 7%. Accuracy improved
by ∼ 5% and ∼ 1%, respectively. To summarize, data
augmentation with DCGAN or CCAN appears to improve
the detection rate of non-IDC images but hurt the detec-
tion rate of IDC images. Significant challenges remain be-
cause recall is often the most important metric to optimize
in biomedical applications.

Method Precision Recall Accuracy
Real 0.642 0.856 0.682
CCAN 0.513 1.000 0.513
CCAN and Real 0.675 0.783 0.695
DCGAN 0.495 0.051 0.471
DCGAN and Real 0.760 0.695 0.731

Table 1: Effect of data augmentation on breast cancer clas-
sification performance. Metrics are reported based on the
validation dataset.



(a) Real (b) Synthetic CCAN

(c) Combined CCAN (d) Synthetic DCGAN

(e) Combined DCGAN

Figure 7: Precision recall for each model

Additionally, Table 1 shows that training on synthetic
images generated from either CCANs or DCGANs resulted
in classifiers with poor classification accuracy. Based on
precision and recall metrics, the classifier trained on CCAN
images mostly predicted IDC while the classifier trained on
DCGAN images mostly predicted non-IDC.

Figure 8: Nearest neighbors of test image correctly classi-
fied after data augmentation.

After data augmentation with DCGAN3, precision and
accuracy improved compared to the baseline model. In Fig-

ure 8 we visualize the nearest neighbors of an image that
was incorrectly classified by the baseline classifier but cor-
rectly classified after data augmentation. An image’s near-
est neighbors in the training set should have great influence
on its classification. Indeed, the two synthetic cancer im-
ages are part of the five nearest neighbors of the test image
in Figure 8 and probably influenced its classification.

6. Conclusion
This project demonstrated that it is possible to increase

breast histology classification accuracy by augmenting the
training set with synthesized images. However, with the ad-
mittedly limited number of methods we attempted, most of
the improved accuracy was due to improving the true nega-
tive detection rate instead of the true positive detection rate.
In biomedical settings, it is often more important to have
high recall.

Nevertheless, we learned that using DCGANs to gener-
ate histology images may be a promising direction for data
augmentation to improve breast cancer detection. Addition-
ally, we learned how to improve the existing DCGAN im-
plementation to produce images that more closely resem-
bled histology images, namely choosing a stride length that
could divide the kernel size perfectly to reduce checker-
board artifacts. There were several limitations we had to
work with in this project, namely lower resolution histol-
ogy images, limited time to fully explore different GAN ar-
chitectures, and training time. Although our generator and
discriminator errors appear to be converging, in general we
found increasing the number of epochs to improve the re-
semblance between generated images and real images. As
Figure 8 shows, our synthetic images were among the clos-
est neighbors to some breast histology images in our valida-
tion set. We believe it is possible that with a better dataset,
a more comprehensive and principled exploration of differ-
ent GAN architectures, and more training time, that recall
could be improved.

We also learned that our usage of CCANs was not well-
suited to augmenting breast histology images. We believe
the primary reason for this is that a significant portion of
the generated synthetic images were too similar to the orig-
inal source image. Thus our assumption that the CCAN will
map real, non-IDC images to synthetic IDC images and vice
versa is partially incorrect. Instead, we believe our training
set was augmented with similar images with opposite la-
bels, which is expected to decrease classifier performance.
This hypothesis is confirmed empirically - the recall for the
model trained on both synthetic CCAN data and real data
are slightly worse than the baseline model, as indicated in
Table 1. A future direction is to investigate whether retain-
ing significantly different image pairs generated by CCANs
could prove to be an effective data augmentation method.
This could be implemented using sum of squared distance



between the CCAN output image and the source image as a
metric for evaluation.

The state-of-the-art GANs are capable of generating im-
ages that fool the untrained human eye. However, we be-
lieve challenges remain in applying GANs as a way to aug-
ment biomedical images. In principle, the generator net-
work needs only to produce images that fool the discrimina-
tor, without the requirement to generate images that capture
true biological signal. At the same time, the discriminator
need not use features specific to biology to distinguish be-
tween real and fake images. Even if the generator is capable
of capturing true biological signal, there is no guarantee that
the generated images contain new signal that could improve
the performance of a trained classifier on the entire popula-
tion of images. Despite these challenges and lack of theory
that guarantees success for similar applications, our project
demonstrates empirically that synthesizing biomedical im-
ages with GANs could improve breast cancer classification
accuracy.
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