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Abstract

Convolution neural networks (CNN) are
effective methods for document classi-
fication (Kim, 2014). This paper ex-
plores whether CNNs are similarly ef-
fective for journal recommendation from
PubMed abstracts, a task that if successful
can help authors decide which journals to
submit to. Of the CNN architectures ex-
plored, evidence points to the embedding-
augmented CNN as the most effective neu-
ral architecture, which in this paper re-
ceives topic and impact factor embeddings
following the last convolution layer as ad-
ditional input. This result supports the in-
tuition that research topic or result signifi-
cance are relevant in helping determine the
appropriate journal to submit to.

1 Introduction

Submitting an article to a scientific journal is a
time-consuming process, with many format guide-
lines that need to be adhered to. Thus, it is ideal
to know which journals are a good fit for a paper
during the publication process. After a paper has
been submitted, the editorial office sometimes first
assesses an article to determine whether the paper
is a good fit before assigning it to reviewers. This
initial assessment is usually quick and can take
less than a week, which suggests that the abstract
alone may be sufficient for establishing the “fit”
for a journal.

This paper evaluates the effectiveness of jour-
nal detection from abstract text, in research arti-
cles from PubMed (Coordinators, 2017), a popular
database of biomedical research articles. PubMed
articles are limited to those on research topics
listed by the American Society of Human Genet-
ics (ASHG 2018). Intuitively, the “fit” of a jour-

nal depends on factors such as research topic, sig-
nificance of the result, or even the style of writ-
ing. For instance, journals such as PLoS Genetics
or BMC Bioinformatics prefer research articles on
specific topics whereas journals such as Science or
Nature prefer articles of high significance and im-
pact. The word clouds in Figure 1 shows that de-
spite their supposed similarities, the abstracts from
journals Science and Nature have a different distri-
bution of words.

(a) Word cloud of abstracts from Science.

(b) Word cloud of abstracts from Nature.

Figure 1: Word Cloud comparison of two similar
journals.

Neural-based methods have proven to be effec-
tive for supervised learning from text data. This



paper evaluates several convolutional neural net-
work (CNN) architectures to answer two questions

1. Does the abstract text alone contain enough
information for effective journal detection?

2. How relevant are research topic and finding
significance for journal detection?

Question 1 will be addressed with a standard
CNN to predict journals. Question 2 will be ad-
dressed with a multitask CNN that predicts jour-
nal, research topic, and impact factor simultane-
ously, and a multi-input CNN that receives topic
and impact factor embeddings after all convolu-
tion operations to help journal detection.

2 Related Work

Limited work has been done that directly ad-
dresses the journal detection problem. The two
closest works found are Jane and Elsevier’s jour-
nal recommendation systems (Schuemie and Kors,
2008; Elizabeth Ash and Lyndsay Scholefield).
Both Jane and Elsevier’s search engines suggest
journals based on similarities between input text
and existing journal articles, taking on a nearest
neighbor’s approach. This paper differs from this
work by building a direct mapping between text
and journal labels.

Other related works exist that study academic
literature with different aims from ones in this pa-
per. These include predicting the impact of an aca-
demic paper based on its citation network and pre-
dicting long-term citations of a paper based on ci-
tations in the first few years after publication (Mc-
Namara et al., 2013; Abrishami and Aliakbary,
2018).

One of the challenging aspects of this work is
that the output space for journal detection is in
the thousands. A related work addresses this chal-
lenge with hierarchical deep learning, which clas-
sifies a document successively from broad to fine
classes (Kowsari et al., 2017). However, this hi-
erarchical approach cannot be applied to journal
prediction yet because the notion of journal cate-
gories is currently ill-defined and not readily avail-
able. For example, it is not possible to group jour-
nals by research topic since some journals publish
research in a variety of topics.

3 Data

Abstracts are obtained from PubMed, with the
inclusion criteria based on whether its research

topic is listed by ASHG (ASHG 2018). The re-
search topics included are Mendelian diseases, sta-
tistical genetics, population genetics, bioinformat-
ics, omics technologies, genome structure, epige-
netics, and developmental genetics1. Abstracts
that show up in more than one PubMed topic
search result are not included so that each ab-
stract is assigned strictly one research topic. After
data cleaning, the final dataset comprises 415,381
PubMed abstracts, each labeled with its research
topic, impact factor of the journal it was published
in, and name of journal.

Data collection starts by programmatically
downloading abstracts by topic using Biopython
(Cock et al., 2009). All articles must be within
10 years of 2018 and review articles are excluded
from the search result. Impact factor annotations
are obtained from other online resources since
PubMed does not provide this information. Meta-
data of all journals in PubMed are first obtained
from PubMed2. As of October 21, 2018, this list
contains 31,689 journal records. Next, impact fac-
tors are obtained from CiteFactor (Citefactor), a
resource containing impact factors for 8,771 jour-
nals. The impact factors for journals not in Cite-
Factor are obtained by scraping Google’s quick
answer box results using the requests and
BeautifulSoup Python libraries. Together,
this resulted in a final journal list of 7,150 journals
with impact factors, of which ∼ 25% of the im-
pact factors are obtained from Google. Abstracts
published by a journal without an impact factor an-
notation are excluded from the final dataset. Other
reasons for excluding journals include missing on-
line or print ISSN, journal names with the word
“review”, missing journal name abbreviation, or
duplicate journal name abbreviation3. Although
nearly 80% of journals in the original master list
are excluded because of missing impact factor, all
mainstream biomedical journals are in the master
list. Many journals for which the impact factor are
not easily found are lesser known journals, review
journals, or international journals.

Mendelian phenotypes, epigenetics, and omics

1The topic of complex disease is excluded because most,
if not all of the results returned using the “complex traits”
or “polygenic disorder” keywords are review articles. Thus,
keywords at the level of complex traits is too general for find-
ing abstracts on specific complex diseases such as multiple
sclerosis.

2ftp://ftp.ncbi.nih.gov/pubmed/J_
Medline.txt.

3In which case one journal is chosen at random.

ftp://ftp.ncbi.nih.gov/pubmed/J_Medline.txt
ftp://ftp.ncbi.nih.gov/pubmed/J_Medline.txt


technologies are the least common research topics
in the final dataset. This is not surprising because
epigenetics is a relatively new field in genomics
research and most diseases are not Mendelian dis-
eases. Since omics technologies is concerned with
the development and improvement of large-scale
assaying techniques for molecular biology, it is not
reasonable to expect these types of articles to out-
number articles whose research depends on these
technologies. Figure 2 shows the distribution of
research topics in the dataset.

Figure 2: Research topics distribution.

The majority of abstracts belong to journals
with impact factors less than 25, with only
a few outliers, such as abstracts published by
A Cancer Journal for Clinicians, which has an
impact factor of 162.5. The distribution of impact
factors is shown in Figure 3.

Figure 3: Impact factor distribution.

After the data cleaning steps described, a to-
tal of 4,222 journals exist in the dataset. Figure
4 plots the number of abstracts by most popu-
lar journals. The top five most popular journals
are PLoS ONE, bioinformatics, scientific reports,
BMC bioinformatics, and PNAS, all of which are
well-known and commonly read in the scientific
community. Given that the topic bioinformatics
makes up the majority of research topics, it is not
surprising to see the journals bioinformatics and

BMC bioinformatics among the top five popular
journals. The rest of the top five journals publish a
broader range of research topics.

Figure 4: Number of abstracts published by the
top five frequent journals in dataset.

Finally, rare journals are removed from the
dataset to establish a more feasible goal for rele-
vant journals. In this project, all journals repre-
sented by less than 0.01% (∼ 40 abstracts) of ab-
stracts in the dataset are excluded. This removed
roughly 7.1% of abstracts. This should not com-
promise the purpose of this project since rare jour-
nals may have a narrower scope. For instance, a
journal may be rare because it only publishes on
a niche research area or tends to publish papers
from a certain country. The final dataset comprises
1,548 unique journals.

4 Method

The three CNN architectures to be explored for
journal prediction are

• Baseline CNN architecture: single input, sin-
gle output CNN for journal prediction.

• Multitask CNN: learns prediction tasks of re-
search topic, impact factor, and journal si-
multaneously.

• Embedding-augmented CNN: multi-input
CNN that receives topic and impact factor
embeddings trained from the baseline CNN.

In this work, words are represented by em-
beddings in R200 pre-trained on around 700,000
PubMed articles. The training was done with
word2vec with a window size of five (Pyysalo
et al., 2013). All embeddings are normalized to
have l2 norm of one. Embeddings represent words
in a meaningful space based on their context dis-
tribution in the corpus. Due to memory consider-
ations, only the top 750,000 frequent words in the



training dataset are assigned embedding represen-
tations. The maximum allowed abstract length is
set to 500 words with post-text padding for shorter
abstracts. The optimizer of choice is Adam with
a learning rate of 0.001, and all training is per-
formed for 2 epochs through the training dataset.
The training dataset comprises 80% of the en-
tire dataset, and the development and test datasets
each comprise 10% of the dataset. Computation
and storage was provided by AWS instance type
c5.2xlarge.

4.1 Baseline CNN
The CNN architecture of the baseline model is
based on the CNN model reported by Yoon Kim in
2014 (Kim, 2014). Briefly, CNNs train by learn-
ing filters to recognize phrases of a sentence that
are relevant to the document classification task at
hand. Thus, a filter of size n is designed to rec-
ognize n-grams. The architecture of the baseline
CNN in this work is

1. Fixed embedding layer of pre-trained weights

2. First convolution layer: 1D convolution with
128 filters of size 5 with ReLU activation,
batch normalization, max pooling of window
size 5

3. Second convolution layer: 1D convolution
with 128 filters of size 5 with ReLU acti-
vation, batch normalization, max pooling of
window size 35

4. Dense layer with 128 output units with ReLU
activation

5. Dense output layer with softmax

The batch normalization layer is placed after
non-linearity as recommended by an analysis of
batch normalization placement (Dmytro Mishkin).
Briefly, the main purpose of batch normalization is
to limit the covariance shift by normalizing the ac-
tivations of each layer. Batch normalization also
has the effect of making the neural network more
robust to changes in hyperparameters.

4.2 Multitask CNN
One way to address how important research topic
and finding significance are for journal prediction
is with multitask learning. Multitask learning is
the task of simultaneously learning multiple pre-
diction tasks, which in this project are predictions

of impact factor, research topic, and journal. This
approach is especially effective when the different
prediction tasks are sufficiently similar such that
the weights obtained from training each predic-
tion tasks independently end up being quite sim-
ilar (Caruana, 1997).

Since impact factor is a continuous measure,
this leads to multitask learning involving two clas-
sification tasks and one regression task. However,
this is problematic because the CNN has to train
for shared weights that output values between 0
and 1 and values in [0,∞). Thus, impact factor is
first discretized so that all tasks are in the classifi-
cation setting. In a preliminary analysis, both im-
pact factor and journal detection improved in de-
velopment accuracy after this conversion. Impact
factor is discretized into the bins [0, 2.5], (2.5, 5],
(5, 10], (10, 15], (15,∞). These bins are arbitrar-
ily defined based on the observation from Figure 3
that most impact factors fall between 0 to 10 with
a mode close to 5. Although arbitrary, this does
not detract from the main purpose of learning a
mapping between abstract text and impact factor
so that embeddings can be generated.

4.3 Embedding-Augmented CNN
The embedding-augmented CNN is a multi-input
version of the baseline CNN for predicting jour-
nals. The additional inputs are embeddings trained
from research topic and impact factor. The embed-
dings are concatenated with the vector output after
the last max pooling layer. The architecture of the
embedding-augmented CNN up to the concatena-
tion is shown in Figure 5.

Figure 5: Multi-input CNN architecture.

After the concatenation layer are the following
densely-connected layers.

1. Dense layer with 1,000 output units with
ReLU activation, batch normalization

2. Dropout layer with probability 0.1



3. Dense layer with 1,000 output units with
ReLU activation

4. Dense output layer with softmax

The topic and impact factor embeddings are
trained using with the baseline CNN architecture.
Both embeddings are taken to be the activation
output in R128 before the final softmax layer of
the standard CNN.

By design, the embedding-augmented CNN ar-
chitecture can decide how much the topic or im-
pact factor embeddings should influence journal
prediction. If the topic and impact factor embed-
dings are completely irrelevant, then the model
falls back to become similar to the baseline CNN.
This flexibility in training on the inputs is in a sim-
ilar spirit with the state-of-the-art ResNet, which
effectively allows for the training of shallower
neural networks if the prediction task does not nec-
essarily need training on all specified layers (He
et al., 2015).

4.4 Evaluation

Performance will be evaluated on a completely in-
dependent test dataset that comprises 10% of the
entire dataset. Both the research topic and im-
pact factor embeddings are strictly trained from
the training dataset. Although accuracy can be
used to reflect performance, it is not the best met-
ric for journal recommendation. Since a good pa-
per can usually be accepted by multiple journals,
in reality a recommendation for a paper should
consist of all journals that would accept the paper.
However, since the counter-factual of submitting
to a journal other than the one the paper was pub-
lished by does not exist in the data, training is lim-
ited to building a mapping between one abstract
and one journal. Ideally, true performance should
be measured by precision and recall on counter-
factual journal submission attempts.

One way to approximate the ideal evaluation is
to consider the model correct for paper i if the
journal it is published by is contained within the
top k journal predictions ranked by probability.
The assumption behind this approximation is that
if true journal label is contained within the top k
predictions, then most of the k − 1 journals are
also journals the paper could be accepted by. This
accuracy, which will be referred to as coverage ac-
curacy at k in this paper, is computed as

A(y,HK) =
1

n

n∑
i=1

1(y(i) ∈ H
(i)
k ) (1)

where y(i) is the true label of abstract i and H
(i)
k is

the set of k journals with the top k prediction prob-
abilities for abstract i. Note that this metric is in
the same spirit as, but still slightly different from,
the precision at k metric, which is the proportion
of k recommendations that are true.

Since in practice the best k is unknown, another
way to evaluate the model is with the area under
the curve (AUC) of coverage accuracy at k against
percent coverage of classes due to k. This metric
is similar to other AUC metrics and ranges from 0
to 1, with 1 corresponding to the score of a perfect
model. Alternatively, one can report performance
as the smallest k that reaches a desired coverage
accuracy.

5 Results

Across the metrics of accuracy, AUC, and k to
achieve 90% coverage accuracy, evidence points
to the embedding-augmented CNN as the best
neural architecture for journal prediction. Perfor-
mance is then followed, in order, by the baseline
CNN and multitask CNN. As reference, the ma-
jority class classifier would achieve 6.6% accuracy
on the test dataset. Table 1 summarizes the numer-
ical performance results for all models.

Model Accuracy AUC
k for 90%
coverage
accuracy

Baseline CNN 21.6% 0.975 80
Multitask CNN 19.1% 0.971 100
Embedding-augmented
CNN 23.7% 0.978 60

Majority class 6.6% NA NA

Table 1: Performance summary of baseline, mul-
titask, and embedding-augmented CNN.

By design, the embedding-augmented CNN
should have performance at least as good as the
baseline CNN, and this was indeed the outcome
of the experiments. In a preliminary analysis,
a 3-layer fully-connected neural network on just
the embeddings was only able to reach a 12%
development accuracy. Thus, the embeddings
themselves were insufficient to reach performance
comparable to the baseline CNN. Based on the
performances of topic and impact factor prediction



using standard CNNs, the research topic embed-
ding seems to be more successful in generating
features that are discriminative of topic than the
impact factor embedding. The developmental test
accuracy for research topic was 80.2% and 53.9%
for impact factor. Figure 6 plots PCA of topic and
impact factor embeddings. In Figure 6a, maxi-
mum separation can be observed between points
from bioinformatics and points from population
genetics and gene structure. This is expected since
bioinformatics is generally considered quite dif-
ferent from population genetics and gene struc-
ture. Considerable overlap can be observed be-
tween points from bioinformatics with points from
statistical genetics, developmental genetics, epige-
netics, and omics. This again is unsurprising ex-
cept for the overlap between developmental genet-
ics and bioinformatics, since development genet-
ics focuses on the genetic basis of embryonic and
postnatal development and growth. In Figure 6b,
the separation between points from Gene, Nature,
and Science is observed. The journal Gene has im-
pact factor 2.32, Nature has impact factor 42.35,
and Science has impact factor 37.21.

(a) Embeddings PCA of
1,000 randomly selected
abstracts.

(b) Embeddings PCA
of abstracts from Gene,
Nature, and Science.

Figure 6: PCA of embeddings.

Figure 7 shows the coverage accuracy versus per-
cent coverage for all three neural architectures. It
can be observed that 90% coverage accuracy can
be achieved with k ≤ 100 for all models, and
this demonstrates that all three models were able
to identify journals highly irrelevant for a given
abstract.

(a) Baseline CNN. (b) Multitask CNN.

(c) Embedding-
Augmented CNN.

Figure 7: Plot of coverage accuracy versus percent
coverage. Percent coverage is calculated as k di-
vided by 1,548, the number of unique journals in
the dataset.

In the multitask CNN, both journal and research
topic prediction suffered while impact factor pre-
diction improved, compared to the respective stan-
dard CNN models. On the development dataset,
journal prediction accuracy dropped from 21.7%
to 18.9%, topic accuracy dropped from 80.2% to
77.3%, and impact factor accuracy improved from
53.9% to 55.4%.

6 Conclusion and Future Directions

This paper reports the effectiveness of CNNs in
predicting the journal from abstract text and sup-
ports the hypothesis that the abstract text alone
contains sufficient information to effectively de-
tect the journal it was published by. Between
multitask CNN and embedding-augmented CNN,
the embedding-augmented CNN demonstrates it-
self as more effective in utilizing additional infor-
mation on research topic and impact factor asso-
ciated with the abstract. The improvement in per-
formance from baseline provides evidence that re-
search topic and result significance are relevant to
determining which journal a paper was published
by, although error bars on the performance are
needed to establish statistical significance in the
future. Overall, all three models are quite effective
at identifying irrelevant journals for an abstract. In
at least 90% of predictions, the true journal is con-
tained within the top 6.5% of journal recommen-



dations ranked by probability.
There is evidence that there is a stronger as-

sociation between abstract text and research topic
than between abstract text and result significance.
The baseline CNN was able to achieve a valida-
tion accuracy of 80.2% on research topic predic-
tion across 8 categories but only 53.9% on impact
factor prediction across 5 categories. This out-
come is not unexpected. The usage of a few key-
words is itself often sufficient for establishing the
research topic for the reader. However, determin-
ing the significance of a result should require more
than interpreting the meaning of phrases or style of
writing. Instead, significance is usually also evalu-
ated by considering what has already been discov-
ered in the field, in order to establish the novelty of
the work or how the results can help progress the
field further in the future. Thus, if higher-order
reasoning based on knowledge of a research field
is what primarily determines significance, then the
abstract alone is not enough to infer significance.

Research topic and impact factor embeddings
generated in this work are by themselves not suf-
ficient for establishing superior performance over
the baseline CNN model. This could be due to
several reasons. One reason is that the eight pre-
defined research topics and impact factor labels
may not themselves be the appropriate labels for
representing topic and significance for discrimi-
nating between journals. For instance, the topic
label of Mendelian disease may be too broad to
help differentiate between journals that publish ex-
clusively on sickle-cell anemia or Tay-Sachs dis-
ease, both of which are subtopics of Mendelian
disease. Impact factor may not be the best mea-
sure for individual paper quality since it is a qual-
ity measure of papers published by a journal over-
all. A second reason research topic and impact
factor embeddings alone may not be enough to ef-
fectively discriminate between journals is because
there are other unknown factors which are impor-
tant for predicting journals, such as style of writ-
ing.

The multitask CNN was the worst performing
model of the three. Although the three predic-
tion tasks for journal, topic, and impact factor are
similar enough that the drops in performance are
not appreciable, they are not sufficiently similar
to yield an improvement in performance for jour-
nal prediction. Multitask learning is effective if
the lower-order features for the prediction tasks

are quite similar, such as how edges or corners
are key features for most object detection tasks
in computer vision. The multitask CNN in this
paper may have suffered performance because the
lower-order features for impact factor may be very
different from the lower-order features used for re-
maining prediction tasks. Incidentally, the devel-
opment accuracy for impact factor is the only task
with accuracy improvement, so it may be interest-
ing to see if multitask CNN performance improves
when the tasks are limited to just journal and topic
predictions.

The fact that the embedding-augmented CNN
only offered a 2.1% additional improvement in
test accuracy over the baseline CNN suggests that
there may exist other higher-order features that
are important for journal prediction, such as the
style of writing. While this work evaluates the ef-
fectiveness of incorporating topic and impact fac-
tor for journal prediction, it also illustrates one
way to evaluate how important a particular aspect
of a document is for a given classification task.
Future work for journal prediction could use the
embedding-augmented CNN to evaluate the rele-
vance of other embeddings for journal prediction,
such as embeddings for academic institution or
reputation of authors.

This paper also reports the effectiveness of
CNNs for journal recommendation from abstract
text. For an author with a pre-determined list of
potential journals to submit to, it is more practi-
cal to train a CNN model with a journal output
space constrained by the pre-determined list. Al-
ternatively, one could train a general journal rec-
ommendation model like the one in this work and
eliminate potential journals that are not part of the
top k recommendations.

This work can be extended in several ways. One
way is to find additional search keywords used to
retrieve abstracts of a research topic so that more
data is collected. Along with more data, it may be
interesting to see if the introduction text can yield
additional discriminative power. Another way is
to perform hyperparameter tuning and allow the
training to continue for more epochs. Regarding
the neural architecture, convolution filters of dif-
ferent lengths should be experimented with so that
relevant phrases of varying lengths can be learned.
For evaluation, it may be interesting to see if recall
and precision vary with how common the journal
is in the dataset. Finally, it may be interesting



to characterize journals based on how much re-
call and precision improves when different embed-
dings fed into the embedding-augmented CNN.
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