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1 Specify the causal question

The causal question we want to answer is the effect salary has on the probability of leaving
a company. Specifically, we are interested in the difference in probability of leaving if em-
ployees have a high salary versus if employees have a low salary. It is not clear how high and
low salary is defined. For example, it may be high and low relative to the department of the
employee, high and low relative to the company, or high and low compared to the market
value for a particular type of role.

Beyond the causal question, we are also interested in ranking the relative importance of an
employee’s salary, employee’s score on the most recent evaluation, employee’s satisfaction
level, and employee’s average monthly hours in affecting the employee’s probability of leav-
ing a company. To accomplish this, we will estimate a variable importance measure (VIM)
for each of the mentioned variables with the G-computation formula, controlling for all the
other variables. The VIMs will only have a statistical interpretation for comparing the im-
portance between variables.

Our population is a simulated dataset of 14,999 observations (employees) from Kaggle. We
hope to be able to draw inference on the entire population of employees. It is not clear
from the documentation whether this population is from a single company or from multiple
companies.

2 Specify the causal model

Let us begin by describing our thought processes in constructing our causal directed acyclic
graph (DAG). We started out with a complete graph with edges between all nodes, where
each node is a separate variable. The variables in our dataset were:

• whether the employee was promoted in the last 5 years (promotion)

• the number of projects an employee has completed while at the company (#projects)
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• whether the employee had a work accident or not (work accident or accident)

• the time an employee has spent at the company (time spend company)

• the average monthly hours (avg monthly hours or hours)

• the employee’s department (department)

• the employee satisfaction level (satisfaction)

• the score on the employee’s last (most recent) evaluation (last evaluation or evaluation)

• the employee’s salary (salary)

• whether the employee left (left)

In the original graph we could identify 4 exclusion restrictions: between department and
promotion, between work accident and promotion, between salary and work accident and
between department and last evaluation. For example, we thought that the one between
department and last evaluation warranted an exclusion restriction because the department
an employee is in should not affect the last evaluation an employee has received (e.g. if all
departments are assumed to give out the same ”grade scale”, imagine their evaluations to
be ”curved” like in college), and our experience told us this is true in practice. Conversely,
the last evaluation received should not affect the department one works in. As another
example, we justified that there could be an exclusion restriction between department and
promotion because, generally, it seemed reasonable to assume that employees receive pro-
motions independently of which department they are in. We also assumed that, based on
our understanding of the workplace settings, work accident and promotion do not affect
each other, nor do salary and work accident. Except for these four edges, our initial graph
would be fully connected.

However, we soon stumbled on other difficulties. For example, we found reason for an edge
between avg monthly hours and work accident (working more hours could potentially in-
crease the risk of a work accident) but also the other way around (after an accident people
might work less). We therefore decided that we do not want to assume directionality between
these two nodes. To resolve this issue, we decided to combine these two variables.

It is important to note that we did not combine them because we knew that the interaction is
bidirectional; we did so because we could not exclude the possibility that it is. We stumbled
upon the same problem when looking at the nodes #projects and average monthly hours,
namely, that both could potentially influence each other. Because we already combined
work accident and avg monthly hours, we now had to combine all three of those variables.
Because of the way #projects is defined (number of projects completed while in company)
it might be influenced by time spend in company (someone who has been at the company
for a longer time might have been able to complete more projects). However, the time spent
in the company is probably influenced by whether someone had a work accident. Because
work accident and #projects have been combined into a node, there would now be an arrow
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between time spend in company and the combined node, and between the combined node
and time spend in company. The resulting graph would therefore not be acyclic anymore,
and we had to combine the already combined node and time spend in company. The same
logic applied for the promotion variable.

Additionally, we felt that we should also combine the variables last evaluation and satisfaction,
again because we could not say for sure that the edge connecting the two would be one di-
rectional. So, our “true” causal graph consisted of the following five nodes:

1. department as W1

2. promotion, #projects, work accident, time spend company and avg monthly hours
as W2

3. salary as A

4. last evaluation and satisfaction as Z

5. left as Y

Furthermore, we decided that department might influence avg monthly hours but not the
other way around, and that department might influence satisfaction, salary, and left. The
variable left is in turn also affected by salary, department and the combined node W2. We
also decided that at least in the initial, “true” causal graph, no independence assumptions
were warranted.

We were aware of the fact that drawing a simple “W-A-Y” DAG, which includes only three
nodes, might have saved us a lot of work while at the same time contain our graph as a
special case. However, we decided that breaking up the nodes into W1, W2, and Z in our
model would prove its worth later in the roadmap.

Our endogenous variables are X = {W1,W2, A, Z, Y }, our exogenous errors are the following:

U = (UW1 , UW2 , UA, UZ , UY )

The structural equations that follow from this are:

fW1 =f(UW1)

fW2 =f(W1, UW2)

fA =f(W1,W2, UA)

fZ =f(W1,W2, A, UZ)

fY =f(W1,W2, A, Z, UY )
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Figure 1: This is our causal directed acyclic graph (DAG).

3 Specify the causal parameter of interest

We denote our target causal parameter ΨF (PU,X) and define it by the Average Treatment
Effect (ATE):

ΨF (PU,X) = EU,X(Yhigh − Ylow),

where Yhigh and Ylow are counterfactual outcomes for salary.

4 Specify your observed data and its link to the causal

model

The observed data O consists of the following:

• Baseline covariates W1 and W2

• Exposure A

• Mediator Z

• Outcome Y

where W1, W2, A, Z, and Y are defined above. The random variable O has distribution P0:

O = (W1,W2, A, Z, Y ) ∼ P0

This gives us n = 14, 999 i.i.d copies O1, O2, ..., On drawn from probability distribution P0,
which is the underlying probability distribution that are contained in the set of possible dis-
tributions implied by the structural causal model. In other words, we assume the observed
data were generated by sampling n times from a data generating system contained in the
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structural causal model MF . This provides a link between the causal model MF and the
statistical model M, which is the set of possible observed data distributions. Another way
of thinking about this is that the causal structural model accurately captures or describes
the process that gave rise to the observed data. We have not placed any restrictions on the
statistical model, which is thereby non-parametric.

5 Identify

5.1 Assessment of the Back-Door Criterion

Our target causal parameter ΨF (PU,X) = EU,X(Yhigh − Ylow) is not identified under the ini-
tial causal model because there are several unblocked back-door paths from outcome Y to
exposure A. See Figure 1.

To satisfy the back-door criteria, we would need to place independence assumptions on the
distribution of unmeasured factors PU . Specifically, there are four ways that the causal pa-
rameter can be identified as some parameter of our observed data distribution. Then, when
we condition on W1 and W2, we would meet the back-door criteria. See Table 1 and Figure 2.

Table 1: Four possible sets of independence assumptions to satisfy back-door criteria

Set 1 Set 2 Set 3 Set 4
UW2 ⊥ UZ UW2 ⊥ UZ UW1 ⊥ UW2 UA ⊥ UW2

UW2 ⊥ UY UW2 ⊥ UY UW1 ⊥ UZ UA ⊥ UZ

UW1 ⊥ UW2 UW1 ⊥ UZ UW1 ⊥ UY UA ⊥ UY

UA ⊥ UZ UW1 ⊥ UY UA ⊥ UW2 UA ⊥ UW1

UA ⊥ UW1 UA ⊥ UZ UA ⊥ UZ

UA ⊥ UY UA ⊥ UY UA ⊥ UY

It is hard to say whether one set of independence assumptions is more plausible than the
other. W1, W2, A, Z, and Y all have unmeasured common causes. For example, ethnicity
might affect an employee’s last evaluation, salary, and left. Other examples are age, sex,
personality, physical appearance, and intellectual capability. However, for the purposes of
trying to attain a causal effect between A and Y , we will have to make these independence
assumptions. Set 4 states that the unmeasured variables affecting A are independent of all
other unmeasured variables. This means that salary is randomly assigned to the employees.
This is unrealistic as salary is not assigned randomly in practice. So we eliminate set 4.

The remaining three sets of independence assumptions do not seem realistic as well. How-
ever, if we have to choose one of the remaining three sets of independence assumptions to
satisfy the back-door criterion, we would choose set 3. The reason for this is because set 3
is making the most amount of independence assumptions between the unmeasured variables
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affecting department and the other unmeasured variables. Here, we are stating that the
unmeasured variables affecting department is independent of unmeasured variables affecting
other variables. This is unrealistic, as we know that some unmeasured variables that affect
W1 may also affect W2, Z, and Y . For example, intellectual capability may affect one’s choice
of department, avg monthly hours, satisfaction, and left. However, it is more reasonable
than stating that unmeasured variables that affect W2 is independent of the unmeasured
variables that affect Z. For example, whether an individual’s work ethic may directly affect
promotion (W2). Likewise, it would be difficult to assume that work ethic is independent
of last evaluation (Z). However, it may be more reasonable to assume that work ethic is
independent of department (W1). That is, we can assume that every department will have
individuals with varying levels of work ethic. Again, this may not necessarily be true in real
life, but when compared to the other options, this would be the most reasonable assumption.
So, we will choose set 3 over set 1 or set 2 as the independence assumptions we make to
satisfy the back-door criteria.

This is one of the limitations we have given our data. In order to satisfy the back-door
criterion, we would have to measure more variables as well as change the design of the study.
In the context of salary andleft, additional measurements such as sex, age, ethnicity, so-
cioeconomic background, and education level may help in achieving identifiability. Further,
what we can consider is doing a longitudinal study in which we follow employees over a
period of time, taking measures of variables at different time periods. This may make it
more plausible to satisfy the back-door criterion.

(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

Figure 2: Possible sets of assumptions that meet the back-door criteria after conditioning on W1

and W2
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5.2 Practical Positivity Assumption Evaluation

The positivity assumption states that for every combination of covariates in the observed
data distribution, all levels of treatment must be included, at least once.

min
a∈A

P0(A = a|W = w) > 0

This is important for evaluation of the Average Treatment Effect using the G-computation
formula. If the positivity assumption is not met, the G-computation formula will not be
well-defined.

One of the interesting aspects of our project is that it has high dimensionality. This makes
satisfying the positivity assumption from a practical perspective more difficult. Our approach
for handling positivity assumption violations was to remove those strata where positivity as-
sumptions were violated [1]. Dropping strata effectively shrinks our target population for
the study.

We have a mixture of both qualitative (e.g., department) and quantitative variables (e.g.,
avg monthly hours). In order to evaluate the positivity assumption from a practical per-
spective, we split up the quantitative variables into quantile buckets. We also used these
quantile buckets for the estimation of the average conditional probability and treatment
mechanism.

We selected to split the avg monthly hours into 5 quantile buckets and #projects and
time spend company into 2 quantile buckets.

How did we choose this? Our goal was to maximize the amount of information contained
in the approximated variables while also removing a minimal amount of observations due to
strata that violated the practical positivity assumption.

Out of 8 total covariates, we had five that were quantitative.

There are two variables that were not approximated because they are mediator variables in
our causal graph. This is because we do not need to satisfy the positivity assumption for
variables that we are not conditioning on for the G-computation formula.

• satisfaction

• last evaluation

There is one continuous quantitative variable that is not a mediator variable. Quantiles were
used to approximate this variable using buckets of size k = 2, 3, ..., 10:

• avg monthly hours

There are two discrete quantitative variables. Quantiles are used to approximate the variables
using buckets of size k = 2, 3:
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• #projects

• time spend company

The results from our evaluation are presented in Table 2. We decided to split the avg monthly hours
into 5 quantile buckets and #projects and time spend company into 2 quantile buckets. We
remove the strata (approximately 8.1 percent of the sample) that did not satisfy the practical
positivity assumption.

Table 2: Information Loss due to Practical Positivity Assumption Violation

Number of Quantile Buckets
#projects time spend company avg monthly hours % Dropped

2 2 2 3.2
2 2 3 4.9
2 2 4 7
2 2 5 8.1
2 2 6 11.6
2 2 7 12.5
2 2 8 13.9
2 2 9 15.5
2 2 10 16.5
3 3 2 8.9
3 3 3 11.4
3 3 4 14.9
3 3 5 18.8
3 3 6 21.4
3 3 7 24.9
3 3 8 26.5
3 3 9 28.4
3 3 10 30.5

5.3 MF∗

With the back-door criterion satisfied and the positivity assumption met, we can achieve
identifiability. We use MF∗ to denote the original SCM, augmented with the independence
assumptions and positivity assumptions needed for identifiability. This notation is used to
make it explicit that we are making assumptions to be able to answer our causal question.
That is, we need the additional assumptions to our original causal structural model in order
for our target causal parameter, average treatment effect, to be turned into a parameter of
the observed data distribution. However, these assumptions do not reflect our real knowledge
of the complex relationship between salary and left.

Under the working SCMMF∗, the average treatment effect ΨF (PU,X) is identified using the
G-Computation formula:
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ΨF (PU,X) = Ψ(P0)

= Ew[E0(Y |A = 1,W1,W2)− E0(Y |A = 0,W1,W2)]

=
∑
w1,w2

[E0(Y |A = 1, w1, w2)− E0(Y |A = 0, w1, w2)]P0(w1, w2)

The statistical estimand Ψ(P0) is the difference in the strata-specific conditional probability
of an employee leaving a company when receiving high salary and under low salary, averaged
with respect to the distribution of the baseline covariates, which are department, #projects,
work accident, time spend company, and avg monthly hours.

6 Estimate

6.1 Super Learning

Super Learning [2] was used to estimate both the conditional probability for leaving the
company: Q̄0(Y |A,W ) and the treatment mechanism of having a high salary: g(Ai|Wi) =
P (Ai|Wi). The Super Learning Approach incorporated techniques from a variety of different
types of data-adaptive algorithms [3]:

• Tree-based/Additive methods

• Linear methods

• Prototype methods

• Neural Networks

Where it was thought that a data-adaptive algorithm was sensitive to certain hyper-parameters,
training was conducted on a range of values for this hyper-parameter. Some of the algorithms
already contained a procedure internally for selecting the best hyper-parameters. The results
from running the Super Learner are presented in Table 3.

Super Learner and Discrete Super Learner Risk are obtained from cross-validation of the
Super Learner. The other risk values are obtained from cross-validation of the algorithm.
The coefficient values are associated with the relative weight each algorithm is given in
making the final prediction.

• Tree-based methods: The data-adaptive algorithms with the lowest cross-validated
risk was the Gradient Boosted Tree algorithm. The other tree-based methods had low
cross-validated risk as well. When the results were cross-validated in order to evaluate
the super learner, the Gradient Boosted Tree algorithm was chosen as the Discrete
Super Learner and performed as well on average as the Super Learner (although the
maximum risk was lower for the Super Learner than for the discrete Super Learner).

1Super Learner and Discrete Super Learner do not have coefficient values by definition.
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Table 3: Super Learning Results for estimator of Q̄0(Y |A,W )

Algorithm Risk Coefficient1

Super Learner 0.1088 —
Discrete Super Learner 0.1088 —

GLM 0.1698 0
Ridge 0.1697 0

LASSO 0.1696 0
GAM 0.1539 0

Gradient Boosting 0.1092 0.4521
Random Forest 0.1236 0

CART 0.1145 0.0296
MARS 0.1097 0.3513

Neural Net (nodes = 2) 0.2445 0.0377
Neural Net (nodes = 3) 0.1585 0.0105
Neural Net (nodes = 4) 0.1483 0
Neural Net (nodes = 5) 0.2081 0
Neural Net (nodes = 6) 0.1463 0.0112

KNN (k = 10) 0.1123 0.0897
KNN (k = 15) 0.1143 0.0177
KNN (k = 20) 0.1166 0
KNN (k = 25) 0.1181 0

Mean 0.1977 0

• Linear methods: Many of the linear methods had high cross-validated risk values.
None of the linear methods were given any weight in making the final prediction.

• Prototype methods: K-nearest neighbors had a lower cross-validated risk than all
of the Linear and Neural Network-based methods and was generally competitive with
the Tree-based/additive methods. This is somewhat surprising given the simplicity of
the K-nearest neighbors model.

• Neural Networks: There was a sizable difference in the cross-validated risk and
coefficient values for the Neural Network algorithms, depending on how many hidden
nodes were used in the training process. Some Neural Networks did worse than the
mean, suggesting that the Neural Networks may be over-fitting the data.

6.2 Estimators of the ATE

We applied the simple substitution estimator, inverse probability of treatment weighted
(IPTW) estimator, the modified Horvitz-Thompson estimator and targeted maximum likeli-
hood estimator (TMLE) to estimate the average treatment effect (ATE) as specified by the
G-computation formula.
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Each estimator will require different factors of the observed data distribution P0(O). The
simple substitution estimator only requires calculation of Q̄n(A,W ), which is an estimator
of E0(Y |A,W ).

Ψ̂SSE(Pn) =
1

n

n∑
i=1

(
Q̄n(1,Wi)− Q̄n(0,Wi))

)
The standard IPTW estimator (also called the Horvitz-Thompson estimator) will only re-
quire an estimate of g(Ai|Wi), the treatment mechanism.

Ψ̂IPTW (Pn) =
1

n

n∑
i=1

(
I(Ai = 1)

g(Ai|Wi)
Yi −

I(Ai = 0)

g(Ai|Wi)
Yi

)
Similar to the standard IPTW estimator, stabilized IPTW estimator (also called the modified
Horvitz-Thompson estimator) only requires an estimate of g(Ai|Wi).

Ψ̂ST.IPTW (Pn) =

(∑n
i=1

I(Ai=1)
g(Ai|Wi)

Yi∑n
i=1

I(Ai=1)
g(Ai|Wi)

−
∑n

i=1
I(Ai=0)
g(Ai|Wi)

Yi∑n
i=1

I(Ai=0)
g(Ai|Wi)

)
Lastly, like the simple substitution estimator, TMLE estimates E0(Y |A,W ) with Q̄∗n(A,W ).
However, in order to estimate Q̄∗n(A,W ), TMLE requires an initial estimate Q̄0

n(A,W ) =
En(Y |A,W ) as well as gn(Ai|Wi). The formula for the TMLE estimator is:

Ψ̂TMLE(Pn) =
1

n

n∑
i=1

(
Q̄∗n(1,Wi)− Q̄∗n(0,Wi))

)
where

Q̄∗n(1,W ) = expit(logit(Q̄0
n(1,Wi)) + εnHn(1,Wi))

Q̄∗n(0,W ) = expit(logit(Q̄0
n(0,Wi)) + εnHn(0,Wi))

and

Hn(Ai,Wi) ≡
(
I(Ai = 1)

g(Ai|Wi)
− I(Ai = 0)

g(Ai|Wi)

)
All estimates in this project are performed using Superlearner as a data-adaptive estimation
technique according to the previous description.

With the estimates Q̄0
n(A,W ) and gn(Ai|Wi) produced by Superlearner, the simple substitu-

tion estimator, IPTW and stabilized IPTW are implemented as described by their respective
formulas. The TMLE package is used to find the updated estimate Q̄1

n(A,W ) using both
Q̄0

n(A,W ) and gn(Ai|Wi) as input. The estimates Q̄1
n(1,W ) and Q̄1

n(0,W ) are then plugged
into the G-computation formula to obtain the estimate for our estimand, the ATE. TMLE
offers several advantages over the other two estimators, namely:

1. Serves as a plug-in estimator and provides numerical stability not provided by IPTW.
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2. Consistent estimator of ATE if either the outcome or treatment mechanism is consis-
tently estimated.

3. Provides the most efficient estimator of ATE if both the outcome and treatment mech-
anisms are estimated consistently.

Inference can be performed with all 4 estimators. Variance estimates for the simple sub-
stitution estimator, IPTW, Stabilized IPTW and TMLE are implemented using the non-
parametric bootstrap. The pseudocode for the non-parametric bootstrap can be described
as:

procedure Nonparametric-Bootstrap(X = {W, A, Y}, B)
for i in 1 to B do

Draw n samples from X with replacement to form bootstrap sample X∗i
Estimate Ψ∗i from X∗i

Return Ψ∗1, ...,Ψ
∗
n

The variance of the estimator can then be approximated with

σ2
Ψ̂(Pn)

=
1

B

B∑
i=1

(Ψ∗i − Ψ̄∗i )
2

The variance of the TMLE estimator is also estimated from the variance of the estimating
influence curve (IC)

σ2
Ψ̂(Pn)

=
var(ICn)

n

where the IC is a function that maps every single observation to a value. A 95% confidence
interval can be constructed as

Ψ̂(Pn)± 1.96 σΨ̂(Pn)

where ±1.96 comes from the z-score covering the middle 95% area of the standard normal
curve.

The results from implementing the four estimators can be found in Table 4:

Table 4: Estimator Results

Estimator Ψ̂(Pn) p-value Influence Curve 95% CI Bootstrap 95% CI
Simple Substitution -0.1599 0.0000 — [-0.1633, -0.1563]

IPTW -0.1927 0.0000 — [-0.2174, -0.1663]
IPTW Stabilized -0.2100 0.0000 — [-0.2313, -0.1870]

TMLE -0.1650 8.48e-6 [-0.2376, -0.0924] [-0.1753, -0.1560]

For the non-parametric bootstrap, confidence intervals were created using the normality
assumption as well as the quantile method. These were found to be nearly identical. The
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results for the bootstrapped confidence interval reported in the table are from the normality
assumption. Ultimately, all estimators yield a statistically significant average treatment
effect. However, there are differences in the confidence intervals. The confidence intervals
for the the IPTW estimator (even after stabilization) is larger than the confidence interval
for the Simple Substitution estimator and for the TMLE estimator. This suggests that the
using the IPTW is not an efficient estimator of the average treatment effect. The confidence
interval using the Influence Curve is much more conservative than the confidence interval
using the bootstrapping procedure. This may be due to either of Q̄0

n(A,W ) or gn(Ai|Wi) not
being estimated consistently by the Super Learner, however, we do not know this for sure.

6.3 Sensitivity Analysis

After the estimation step, we were interested in the effect of the number of covariates con-
ditioned on the target estimand Ψ̂(Pn). To answer this question, we performed a short
sensitivity analysis by computing Ψ̂(Pn) with TMLE with an increasing number of covari-
ates. The order in which we increased the number of covariates conditioned on is

• W1 = {avg monthly hours, #projects, work accident, time spend company}

• W2 = W1 + {promotion}

• W3 = W2 + {department}

• W4 = W3 + {satisfaction}

• W5 = W4 + {last evaluation}

We started with multiple variables in the first round because some statistical learning al-
gorithms in Superlearner run into problems when the number of features is too low. The
results are summarized in the graph below, where 95% confidence intervals are calculated as
described above.
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Figure 3: Sensitivity Analysis

In terms of the absolute value of estimated ATE, we observe the most dramatic reduction in
ATE for salary when the last 2 covariates, last evaluation and satisfaction, are conditioned
on. In our causal DAG, these last 2 covariates are considered mediator variables of salary,
and our sensitivity analysis provides further supports for this. Prior to conditioning on the
last 2 covariates, the estimated ATE does not change appreciably with an increasing number
of covariates conditioned on.

6.4 Variable Importance Measure

Given all the available variables in our dataset, a natural question to ask is what is the
relative importance of some of the variables with respect to affecting the probability of an
employee leaving a company. In this part of the project, we decided to use the coefficient β1

in the marginal structural model (MSM)

ln

(
PU,X(Ya)

1− PU,X(Ya)

)
= β0 + β1a

as the measure of variable importance, because some variables are multi-level. From the
use of logistic regression, the coefficient β1 can be interpreted as the odds ratio for variable
A. We will estimate Ψ for each variable by adjusting for all variables in W without con-
sidering the back-door criteria, thus the VIM only takes on a statistical interpretation. For
this project we estimate the VIM for variables salary, last evaluation, satisfaction, and
avg monthly hours. We will iterate through each of the 4 variables in turn as A, with the
rest of the variables except for the outcome treated as W , in order to estimate each variable’s
VIM.

We implemented the MSM with stabilized weights specified as
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st.wt =
g∗n(A)

gn(A|W )
, where g∗n(A) =

1

n

n∑
i=1

I(Ai = a)

where gn(A|W ) is estimated using multinomial regression. Logistic regression is performed
with the glm package with weights specified by st.wt. The 95% confidence intervals are
derived from variance estimates for β1 in logistic regression. Results for estimating the
VIMs are summarized in Table 5

Table 5: VIM Results

Variable VIM p-value 95% CI
Salary 0.1717 2.2381e-63 [0.1390, 0.2097]

Last evaluation 1.5149 3.9643e-103 [1.4590, 1.5734]
Satisfaction level 0.5264 1.4508e-230 [0.5063, 0.5471]

Average monthly hours 1.4956 7.6736e-74 [1.4324, 1.5623]

7 Interpret Results

The causal question we are interested in is the difference in the counter-factual probability of
leaving a company with high salary versus probability of leaving with low salary. UnderMF∗

for identifiability, the covariates W = (W1,W2) satisfy the back-door criteria. These covari-
ates correspond to #projects, avg monthly hours, time spend company, work accident,
promotion, and department. Looking at the TMLE estimated ATE, a change in salary
from low to high corresponds to a 0.1650 reduction in probability of leaving, with a 95%
CI of [-0.2376, -0.0924], indicating significance of effect. If the assumptions of the study are
considered plausible - and we have reason to believe that they are not - then our recommen-
dation for this company is to pay their employees high salaries to reduce employee attrition.

The estimated ATE for salary is similar for the simple substitution estimator (-0.1599) but
noticeably different for the IPTW estimator (-0.1927). However, all 3 estimators agree on
the direction of the effect that salary has on the probability of leaving. A potential reason
for the IPTW-estimated ATE to be different could be due to IPTW being a high variance
estimator from near positivity violations.

In addition to answering the causal question of the effect of salary on probability of leaving,
we also estimated the VIM for salary, last evaluation, satisfaction, and avg monthly hours.
This measure only has a statistical interpretation as we conditioned on all covariates with-
out considering the back-door criteria. From the results, both an increase in salary and
satisfaction is associated with a decrease in probability of leaving. On the other hand, an
increase in last evaluation and avg monthly hours is associated with increased probability
of leaving. Because we did not analyze these factors from a causal framework, we do not
recommend policy decisions based on these results.
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A major limitation of our project is the absence of information on time frame of exposure
for many variables. For example, neither the length of salary nor the length of company
stay are provided. Under these limitations, we assume that salary is constant from when
an employee enters a company to when he/she leaves. The time of stay in a company is
treated as an unmeasured confounder. Another major limitation of our project is the nec-
essary independence assumptions we need to make to satisfy the back-door criterion. As
mentioned previously, the required independence assumptions do not reflect our knowledge
of the complex relationship between salary and whether an employee stays or leaves the
job. However, we still choose to make these convenience assumptions in order to attempt to
answer our causal question.

A potential future direction for this project includes applying TMLE with continuous treat-
ment A rather than binary treatment. There were originally 3 levels of salary (low, medium,
high), but we restricted our samples to those with low and high salary levels as a limita-
tion. Additionally, it is more realistic to consider salary as a continuous variable. Another
potential future direction is to repeat the causal road map for other variables for which we
estimated their VIMs. Furthermore, we could look at the causal effect within strata of the
company, for example, we could consider the causal impact of salary within each individual
department of the organization. Lastly, we can consider changing the design of the study
such that it becomes a longitudinal study where we follow employees and measure variables
at different time points to measure the total effect that salary has on whether the employee
stays or leaves a company.
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Individual Contributions

1. Specify the causal question: Dario Cantore wrote this section and Josiah Davis
reviewed it.

2. Specify the causal model: Dario Cantore wrote this section and Josiah Davis re-
viewed it.

3. Specify the causal parameter of interest: Dario Cantore wrote this section and
Josiah Davis reviewed it.
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4. Specify the observed data and its link to the causal model: Daniel Lee wrote
this section and Calvin Chi reviewed it.

5. Identify: Daniel Lee wrote Section 5.1 Assessment of the back-door criteria and 5.3
MF∗ and Calvin Chi reviewed it. Josiah Davis wrote 5.2 Practical Positivity Assump-
tion Evaluation and Dario Cantore reviewed it.

6. Estimate: Josiah Davis wrote Section 6.1 Super Learner and Dario Cantore reviewed
it. Calvin Chi and Josiah Davis Section 6.2 Estimators of the ATE and Dario Cantore
reviewed it. Calvin wrote Section 6.3 Sensitivity Analysis and Section 6.4 Variable
Importance Measure and Daniel Lee reviewed it.

7. Interpret: Calvin Chi wrote the initial draft for this section and all team members
contributed to it.
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