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Abstract

Statistical and Computational Methods in Epidemiological and Pharmacogenomic Studies:
from Application to Method Development

by

Calvin Chi

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Haiyan Huang, Co-chair

Professor Lisa Barcellos, Co-chair

Statistical and computational methods are seeing a growing role in genetic epidemiology and
pharmacogenomics. Genetic epidemiology is the study of the interplay between genetic and
environmental factors on human health and disease in populations. Pharmacogenomics is
the study of how genes affect response to drugs. Chapter 2 illustrates an admixture mapping
study of multiple sclerosis from local ancestry estimates provided by a linear-chain random
conditional field. Chapter 3 shows the application of regression-based methods and causal
inference principles to study the relationship between genotype and DNA methylation of hu-
man labial salivary glands in Sjögren’s syndrome. Chapter 4 applies variational autoencoder
to perform dimensionality reduction on DNA methylation data for discovery of clinically-
relevant disease subtypes in Sjögren’s syndrome. Chapter 5 applies sparse canonical cor-
relation analysis to summarize gene expression-drug sensitivity associations and introduces
a nuclear norm-based dissimilarity measure to compare associations from different cell line
groups in pharmacogenomic studies. Finally, Chapter 6 presents a 1D convolutional neural
network model for imputing human leukocyte antigen alleles from phased genotype data.
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Chapter 1

Introduction

This dissertation presents both the application and development of statistical and compu-
tational methods for genetic epidemiology and pharmacogenomics. Genetic epidemiology
involves studying the interplay between genetic factors and environmental factors on human
health and disease in populations. Pharmacogenomics is the study of how genes affect or are
associated with people’s response to drugs. Chapters 2 - 4 illustrate applying methods to an-
swer epidemiological or biological questions concerning multiple sclerosis (MS) and Sjögren’s
syndrome (SS), and chapters 5 - 6 focus on developing methods for cancer pharmacoge-
nomics and human leukocyte antigen (HLA) allele imputation respectively. Both classical
and modern methods are encountered in this dissertation. Given the diversity of subjects
present, Chapter 1 is devoted to introducing relevant background for genetic epidemiology
and pharmacogenomics, as well as the main statistical and computational methods involved.

1.1 Admixture Mapping

When the prevalence of a genetic disease varies by ethnicity, it could suggest origination of
the causal genetic variants from a particular ancestral population. One way to investigate
this is to perform admixture mapping, which infers local genetic ancestry in admixed pop-
ulations and tests if risk variants are predominantly of one ancestry in cases compared to
controls (Figure 1.1). Significant association of ancestry with a phenotype is interpreted as
evidence of ancestry-specific phenotype, provided the phenotype is genetic. Admixture oc-
curs when individuals from two or more previously isolated ancestral populations interbreed.
While most allele frequencies remain relatively constant between populations, some differ
substantially by population [1]. Major admixed populations in the United States include
African Americans, Hispanics, and Asian Americans.
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Figure 1.1: Admixture mapping study design [2]. The top half illustrates the admixture
across 4 generations between African and European ancestry. The bottom half illustrates
the study design of admixture mapping between cases and controls.

An admixture mapping study requires

• Reference panel containing genotype data from populations of known ancestry.

• Genotype data of target admixed population, whose local ancestry is to be inferred.

• Phenotype status of individuals from the target population.

Every admixture mapping study needs to control for population stratification, which is the
systemic difference in allele frequencies between ancestral populations. Population stratifica-
tion can cause confounding, where differential risk of an allele by ancestry could be due to a
systematic difference in ancestry between cases and controls. Chapter 2 provides a published
admixture mapping study of MS [3], which has highest prevalence in White, non-Hispanic
populations.

Genotype Data

For the purpose of this dissertation, an individual’s genotype data is the number of reference
alleles at select loci across the genome, where the reference and alternate alleles at each
locus are predefined. The genotype gl at locus l can thus take on values of 0, 1, or 2.
Genotype data is obtained from genotyping chips, which differ in the number of single
nucleotide polymorphism (SNPs) genotyped and the selection of loci for which genotyping is
to be performed. Typically, genotyping chips select “tag” SNPs that is representative of the
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surrounding genetic region by linkage disequilibrium (LD) with surrounding SNPs, where
LD is defined as the non-random association of alleles at nearby loci.

Ancestry Inference

Local ancestry inference involves inferring the ancestry of both alleles at select genetic loci,
using a panel of reference genotypes of known ancestry. Methods for local ancestry esti-
mation include HAPMIX [4], LAMP [5], LAMP-LD [6], LAMP-HAP [6], ELAI [7], and
RFMix [8]. For this dissertation’s admixture mapping study, we choose RFMix, one of the
state-of-the-art methods for local ancestry inference, which has been shown to out-perform
LAMP-LD and LAMP-HAP [8]. RFMix uses a conditional random field parameterized by
random forests to infer local ancestry in phased admixed haplotypes using a panel of reference
haplotypes.

Ancestry inference is preceded by phasing, which is the process to assigning alleles to
paternal and maternal chromosomes from genotype data. This is commonly achieved with
BEAGLE, a software that implements a hidden markov model capable of both phasing and
allele imputation [9]. It has been shown that denser SNPs from imputation can increase
accuracy of ancestry estimation [10].

1.2 DNA Methylation

DNA methylation refers to the methylation of cytosine in CpG sites, which are regions
of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the 5′ → 3′

direction. DNA methylation is one of the mechanisms of epigenetic modification, where
epigenetics is the study of changes in phenotype or gene expression without changes in DNA
sequence. DNA methylation is generally associated with transcription silencing, although
the underlying mechanisms are not necessarily identical at gene promoters, gene bodies or
repeated sequences [11]. Regions of accessible chromatin are frequently lowly methylated
or unmethylated, suggesting that transcription binding and DNA methylation are mutually
exclusive [12]. In other contexts, such as within the gene-body, DNA methylation is positively
correlated with transcription [13–15]. Hence, the relationship between DNA methylation
and gene expression is complex. The phenotypic effects of DNA methylation regulation are
profound, affecting Mammalian development [16, 17], cell type-specific gene regulation [18],
and cancer [19].

The study of DNA methylation is of epidemiological interest for its value as biomarkers
for disease or prognosis, involvement in disease mechanisms, relationship to environmental
exposure, regulation of response to medication, etc. Specifically, DNA methylation is shaped
by both DNA variation [20] and environmental exposure [21–26].

DNA methylation is measured for each CpG site as the ratio of fluorescent intensity from
methylated alleles (M) to total fluorescent intensity from methylated alleles and unmethy-
lated alleles (U), summarized as the β value in Equation 1.1.
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β =
max(M, 0)

max(M, 0) + max(U, 0) + α
(1.1)

Typically, α = 100 in Equation 1.1. The β value ranges from 0 to 1, where 1 reflects complete
methylation and 0 reflects no methylation. Depending on the analysis, some studies prefer
to work with M -values of DNA methylation, which can be mapped from β values according
to Equation 1.2.

M = log2

β

1− β
(1.2)

M -values range from −∞ to ∞. Although β-values are biologically interpretable, M -values
are approximately homoscedastic and thus recommended for differential methylation analysis
[27]. The experimental steps for a methylation assay are

1. Bisulfite treatment: treating denatured genomic DNA with sodium bisulfite, which
deaminates unmethylated cytosines into uracils, while methylated cyosines remain un-
changed.

2. Whole-genomic DNA amplication of bisulfite treated DNA.

3. Hybridization and single-base extension: bisulfite-converted amplified DNA are dena-
tured and binds to the methylation-specific probe or non-methylation probe for each
CpG site. Single-base extension is performed with hapten-labeled dideoxynucleotides
for immunohistochemical assays.

4. Fluorescence staining: immunohistochemical assays are performed to show the inten-
sities of the unmethylated and methylated fluorescent signals.

The above steps are depicted in Figure 1.2. Differential methlyation studies typically com-
pare DNA methylation profiles between different experimental conditions, but in similar
tissues due to the tissue specificity of DNA methylation [18, 28–31].
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Figure 1.2: Workflow of the Infinium I assay for DNA methylation measurement [32].

DNA methylation data requires pre-processing before data analysis. Pre-processing steps
typically correct for batch effects, remove CpG sites with cross-reactive probes [33–35], and
remove CpG sites with SNPs in probes [36]. Cross-reactive probes and SNPs in probes de-
crease binding specificity and lead to spurious methylation signals. Following pre-processing,
it is important to control for confounders such as age [37], smoking [38–41], and ancestry
when analyzing DNA metyhlation data [42]. Chapters 3-4 present a study of the relationship
between genotype, DNA methylation, and clinical phenotypes in SS.

1.3 Pharmacogenomics

Pharmacogenomics is the study of how an individual’s genomic profile affects response to
drugs, and is a branch of precision medicine. Although not always resembling their corre-
sponding tissue in vivo [43], cancer cell lines have been the most widely used pre-clinical
models to study the molecular basis of drug response [44]. Multiple datasets have been
generated to that end, such as the NCI-60 project [45], the Cancer Cell Line Encyclopedia
(CCLE) [46], the Genomics of Drug Sensitivity in Cancer [47, 48], and the Connectivity Map
[49]. Along with profiling the drug response of cell lines across a panel of drugs, these stud-
ies either profile the molecular profiles of untreated cell lines from disease tissue, or profile
molecular profiles of cell lines before and after treatment.

A pharmacogenomic dataset comprises of

• Molecular profiles: gene expression, DNA copy number, genotype, methylation, pro-
teomics, etc.
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• Drug sensitivity measurements.

Drug sensitivity is commonly measured in terms of cell line growth inhibition as a function
of drug concentration. The smaller the concentration required to inhibit growth, the more
sensitive the cell line is to the drug. Two popular measures of drug sensitivity are IC50 and
area over the activity curve measuring dose response (Figure 1.3).

Figure 1.3: Dose-response curve. IC50 is the drug concentration required to inhibit 50% of
cell line growth. Activity area (shaded in gray) is the area over the activity curve measuring
growth inhibition as function of drug concentration [47].

Pharmacogenomic studies broadly fall into the categories of (1) identification of molecular
features as drug-response associated biomarkers or (2) prediction of drug response from
molecular profiles. Challenges to pharmacogenomic data analyses include heterogeneity of
investigated cell lines, assay technologies, compounds screened, and type and quality of
genomic data [44]. As a result, datasets generated from different studies are often not
concordant. Another challenge is inconsistency in drug sensitivity measurements for the
same cell line and drug across different studies [50]. Chapter 5 presents a statistical method
for addressing the challenge of biomarker discovery in a heterogeneous set of cell lines.

1.4 Statistical and Computational Methods

Principal Component Analysis

Principal component analysis (PCA) is a method for finding a subspace in which the data
approximately lies. In computational biology, PCA is often used to visualize genetic sim-
ilarity between populations and as a way to control for genetic ancestry in epidemiologi-
cal studies. Formally, given data x(1), . . . , x(m) ∈ Rn, PCA finds a subspace for the data
x̃(1), . . . , x̃(m) ∈ Rk with k << n such that the original data is approximated well.
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In PCA, this is achieved by projecting the data onto a subspace that optimally describes
variance of the data. We start our derivation by finding the a vector u : ||u||2 = 1 to
project x(1), . . . , x(m) ∈ Rn onto such that the variance of the projections is maximized. The
projection of x ∈ Rn onto u is defined in Equation 1.3.

projux =
x>u

||u||2
= u>x (1.3)

The mean of the projections is u>x̂, where x̂ = 1
m

∑
i x

(i). We can derive the variance
of projections in terms of the symmetric covariance matrix C ∈ Rn×n starting from the
definition.

σ2 =
1

m

m∑
i=1

[
u>(xi − x̂)

]2
=

1

m

m∑
i=1

u>(xi − x̂)(xi − x̂)>u

= uT

[
1

m

m∑
i=1

(xi − x̂)(xi − x̂)>

]
u

=
1

m
u>Cu

(1.4)

Now we finally solve for the vector u : ||u||2 = 1 to project x(1), . . . , x(m) onto such that the
variance of the projections is maximized as a convex optimization problem

max
u:||u||2=1

u>Cu = max
u:||u||2=1

u>UDU>u (1.5)

= max
w:||w||2=1

w>Dw (1.6)

= max
w:||w||2=1

∑
i

λiiw
2
i , (1.7)

where λii is the ith largest eigenvalue from the diagonal matrix D ∈ Rn×n. The solution to
Equation 1.7 is w∗ = e1, which is a vector of zeros except with a 1 in the first entry. This
implies that u∗ = Uw∗ = u1, the first eigenvector of C. The maximum objective value for
σ2 is then λ11, the largest eigenvalue of C, with first principle axis u∗. The projections of
x(1), . . . , x(m) ∈ Rn onto the first principle axis is called the first principal component. More
generally, the ith principal component is found by projecting the data onto the vector that
yields the ith maximum variance. From Equation 1.4, these vectors are the eigenvectors
of C. In genetic epidemiology, principal components are often conditioned on in regression
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models to control for genetic ancestry. An interpretation from PCA is that each original
sample x(i) ∈ Rn is a linear combination of the principal axes u1, . . . , un ∈ Rn, which is
expressed in Equation 1.8.

X = XUU> = XU

u
>
1
...
u>n

 (1.8)

Another popular dimensionality reduction technique is called multidimensional scaling
(MDS), which has the same goal of finding x̃(1), . . . , x̃(m) ∈ Rk from x(1), . . . , x(m) ∈ Rn where
k << n. However, MDS does so by minimizing the sum of difference in pairwise distances
between samples in Equation 1.9

L(D, D̂) =
∑
i<j

(Dij − D̂ij)
2, (1.9)

where D ∈ Rm×m is the distance matrix from x(1), . . . , x(m) and D̂ ∈ Rm×m is the distance
matrix from x̃(1), . . . , x̃(m). When the dissimilarities are given by Euclidean distance, PCA
and MDS are equivalent [51].

Logistic Regression

Logistic regression learns θ ∈ Rn+1 for the function in Equation 1.10

h(x; θ) = g(θ>x) =
1

1 + e−θ>x
, (1.10)

with the mapping h : X → Y , where Y ∈ {0, 1} and x ∈ Rn. The learned weights θ̂ can be
found as the weights maximizing the log likelihood of the data, using either gradient descent
or Newton’s method. Logistic regression has been ubiquitously used in association studies
in genetic epidemiology, evaluating the association between a SNP with a binary phenotype.
Specifically, the exponential of the SNP coefficient has the interpretation of being the odds
ratio. To see this, let p(x; θ) = h(x; θ), and start with the definition of odds

p(x(i); θ)

1− p(x(i); θ)
=

eθ
>x(i)

eθ>x
(i)

+1
1

eθ>x
(i)

+1

= eθ
>x(i) . (1.11)

Using the result from Equation 1.11, the odds ratio (OR) between two sets of covariates x(i)

and x(k) is
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OR =
p(x(i); θ)/(1− p(x(i); θ))
p(x(k); θ)/(1− p(x(k); θ))

=
eθ
>x(i)

eθ>x(k)
= eθ

>(x(i)−x(k)). (1.12)

If x(i)− x(k) = [0, · · · , 0, 1, 0, · · · , 0], then OR = eθp for some p. In other words, if x
(i)
j = x

(k)
j

for every j 6= p and x
(i)
p − x(k)p = 1, then eθp has the interpretation of being the odds ratio

when xp is increased by 1, holding all other variables the same.

Since θ̂ is the maximum likelihood estimate of θ, asymptotically θ̂ has the multivariate
normal distribution in Equation 1.13

θ̂
d→ N (θ, (Iobsn (θ̂))−1), (1.13)

from which we could conduct inference by testing H0 : θi = 0 versus H1 : θi 6= 0. In Equation
1.13, Iobsn (θ̂) is the observed Fisher information from n samples. Let X ∈ Rn×(p+1) be the
data matrix with samples x(1), . . . , x(n), then

Iobsn (θ̂) = X>diag

{
p(x(1); θ̂)(1− p(x(1); θ̂))

}n

i=1

X. (1.14)

The 100(1 − α)% confidence interval (CI) for the odds ratio of xi = c versus xi = c + 1 is
then

100(1− α)% CI = exp
(
θ̂i ± z1−α/2 × ŝe(θ̂i)

)
(1.15)

where z1−α/2 is the standard score. In genetic epidemiology, the possible conclusions regard-
ing an allele based on a 1− α OR confidence interval are

• Not significantly associated with case status: confidence interval contains 1.

• Protective allele: confidence interval lies below 1.

• Risk allele: confidence interval lies above 1.

RFMix: Conditional Random Field

RFMix is a discriminative method for local ancestry estimation that uses a conditional ran-
dom field (CRF) parameterized by random forests trained on a reference panel of haplotypes
[8]. It takes as input phased admixed and reference haplotypes and outputs local ancestry
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estimation for each locus in the data. Let Y represent the random vector of local ances-
try estimates and X be the phased admixed and reference haplotypes, then RFMix models
P (Y |X).

RFMix takes as input the genetic location in centimorgans (cM)1 of each SNP and uses
this genetic location to divide all haplotypes into W contiguous disjoint windows such that
the maximum distance between all SNPs in any window is at most d cM. Assume R an-
cestries are present in N reference haplotypes, then H ∈ RN×W is a matrix where Hi,j

represents the sequence of alleles of haplotype i in window j. Thus, Hi,j can be expanded

to H
(1)
i,j , H

(2)
i,j , ..., H

(sj)
i,j , where sj represents the total number of alleles in window j. The

local ancestries can be represented as A ∈ RN×W , where Ai,j represents the local ancestry
of haplotype i in window j.

RFMix employs a linear-chain CRF to model P (A |H) as an undirected graph of feature
functions and identifies Â to maximize P (A |H). Independence is encoded by the graph and
allows P (A |H) to be written as factorized terms. Feature functions in CRF are functions
that capture the relationship between dependent variables and maps to a real-valued output.
The feature function itself has no probabilistic interpretation but is used to model P (A |H).

Specifically, let Hi,∗ and Ai,∗ represent the alleles and local ancestry assignments of hap-
lotype i across all windows. The CRF models P (Ai,∗ | Hi,∗ : Θ) according to Equation
1.16,

P (Ai,∗ |Hi,∗ : Θ) =
1

Z(Hi,∗)
exp

{
W∑
w=1

R∑
r=1

∑
h∈Hw

θAw,r,h1(Ai,w = r)1(Hi,w = h)

+
W−1∑
p=1

R∑
j=1

R∑
k=1

θTp,j,k1(Ai,p = j)1(Ai,p+1 = k)

} (1.16)

where Hw is the set of haplotypes in window w and Z(Hi,∗) represents the partition function
(normalization constant) summed over all Ai,∗ to ensure P (Ai,∗ |Hi,∗ : Θ) ∈ [0, 1]. The pa-
rameters θT and θA represent model parameters to be learned, which are defined in Equation
1.17.

θAw,r,h = ln(P (Ai,w = r |Hi,w = h))

θTp,j,k = ln(P (Ai,p = j, Ai,p+1 = k))
(1.17)

The feature functions are 1(Ai,w = r)1(Hi,w = h) and 1(Ai,p = j)1(Ai,p+1 = k). The CRF
can be represented graphically in Figure 1.4.

1A unit of centimorgan between two chromosomal positions represents the expected number of crossovers
of 0.01 in a single generation.
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Figure 1.4: Linear-chain CRF. A(i, j) and H(i, j) represent the ancestry and allele sequence
for haplotype i at window j respectively.

The parameter θA is obtained from training a random forest on reference haplotypes for
each window, mapping SNPs to local ancestry. The parameter θT is derived from the joint
probability distribution of the admixture model described by Falush et al [52].

P (Ai,p = j, Ai,p+1 = k) =

{
qj(exp(−dpG) + (1− exp(−dpG))qk) if j = k

qj(1− exp(−dpG))qk otherwise
(1.18)

In Equation 1.18, where qj is the proportion of ancestry j in the admixed population, G
is the number of generations since admixture, and dp is the distance between the middle
windows p and p+ 1.

Once initial estimates for θA and θT are obtained. Entries Ai,p+1 can be determined via
dynammic programming, with the following recurrence relation in Equation 1.19.

Ai,p+1 = arg max
k

{
θAp,r,h1(Ai,p = r)1(Hi,p = h) + θTp,r,k1(Ai,p = r)1(Ai,p+1 = k)

}
(1.19)

With initial estimates for θT , θA, and local ancestries made, these estimates could be itera-
tively improved by using the expectation-maximization (EM) algorithm. This approach has
the advantage of incorporating our admixed haplotypes to infer θT and θA in other admixed
haplotypes.

In the maximization step, θA is updated by re-training random forests for each window.
In each window, the set of chromosomes are divided into b sets such that each set has
approximately the same number of haplotypes assigned to each ancestry. Given a window,
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a random forest is trained on haplotypes from b − 1 sets and used to update θA for the
remaining set. This is repeated b times. The parameters θT is fixed and do not need to be
updated. In the expectation step, the updated parameter θA is used to infer local ancestry
by Equation 1.19.

Causal Inference

Causal inference is a statistical, and to a certain extent philosophical, discipline concerned
with inferring the causal relationship between variables. A causal relationship is said to exist
between A and Y when changing A would lead to a change in Y . The causal relationship has
also been thought about as the difference in potential outcomes under one condition Y (1)
versus another condition Y (0).

Following the causal inference framework from Judea Pearl [53], we introduce the basics
of specifying a structural causal model (SCM) and the back-door criterion for determining
which set of variables to condition on for the treatment effect between treatment A and
outcome Y . A SCM is specified by the following

• Endogenous variables X = {X1, . . . , XJ}: variables meaningful for the study which
could affect one another.

• Background variables U = {U1, . . . , UJ}: unmeasured variables not affected by
variables in X but affects variables in X.

• Functions F = {fX1 , . . . , fXJ}: functions defining structural equations mapping vari-
ables from U,X to variables in X.

With X = {W,A, Y } and U = {UW , UA, UY }, an example set of structural equations is

W = fW (UW )

A = fA(W,UA)

Y = fY (W,A,UY )

(1.20)

SCMs encode from domain knowledge, causal assumptions such as which endogenous vari-
ables affect each other and which variables are independent. A directed causal graph can be
drawn from a specified SCM. For this dissertation we restrict to acyclic SCMs, which lead to
directed acyclic graphs. Two causal structures leading to dependence between two variables
X and Y are shown in Figure 1.5. Figure 1.5a shows a mediation relationship where the
effect of X on Y occurs only through the mediator M . Figure 1.5b shows W being a shared
cause of X and Y , which leads to a spurious association between X and Y .
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(a) An effect of X on Y via mediator M .

(b) Common cause W between X and Y .

Figure 1.5: Causal structures that can lead to dependence between X and Y .

Conditioning on a causal intermediate or shared common cause between X and Y will
remove sources of dependence. However, conditioning on a collider (and its descendents)
between X and Y can induce an association between X and Y (Figure 1.6). Spurious
association between X and Y due to conditioning on a collider is also referred to as Berkson’s
bias. Based on the above mentioned rules, we can remove spurious associations between X
and Y by conditioning on a set of variables S satisfying

• No element of S is a descendant of X.

• The elements of S “block” all “back-door” paths from X to Y , which are paths that
end with an arrow pointing to X.
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Figure 1.6: Collider C between variables X and Y .

The above mentioned criterion for S is called the back-door criterion.
Mendelian randomization in genetic epidemiology comes from the successful application

of causal inference principles. Mendelian randomization uses genetic variation with known
association with a modifiable exposure to investigate the causal effect of said exposure on
disease. It is assumed that genetic variation only affects disease status through the exposure
of interest. This corresponds to the causal structure in Figure 1.5a, where X becomes genetic
variation, M becomes the exposure, and Y becomes disease status. Although there may be
shared common cause between M and Y , it can usually be assumed that there is no shared
common cause between X and Y . This is because genotypes are usually assigned randomly
from parents to offspring, like in a randomized controlled trial. Thus, such a study design
controls for reverse causation and confounding to determine the causal effect between an
exposure with disease. Mendelian randomization has been successfully used show evidence
that increasing levels of vitamin D leads to decreased risk of MS [54]. Chapter 3 provides a
study applying causal inference to show that DNA methylation mediates surrounding genetic
variation on risk of SS at the major histocompatibility complex.

Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering is an unsupervised learning algorithm that builds a
binary tree of the data by successively merging similar clusters of points. In this fashion, ev-
ery subtree represents a cluster. The resulting dendrogram, or binary tree, from hierarchical
clustering provides a helpful visualization of the data. The hierarchical clustering algorithm
is presented in Algorithm 1.1.
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Algorithm 1.1 Agglomerative hierarchical clustering

1: procedure hierarchical clustering({x1, . . . , xn})
2: Place each data point from x1, . . . , xn into its own singleton group
3: while not all data merged into single cluster do
4: Merge two closest group

5: Return sequence of groups

Hierarchical clustering only requires a measure of dissimilarity between data points.
Given a dissimilarity measure d(a, b) between points a and b, the popular choices of in-
tergroup dissimilarity between clusters D(A,B) are

• Complete linkage: D(A,B) = maxa,b

{
d(a, b) : a ∈ A, b ∈ B

}

• Single linkage: D(A,B) = mina,b

{
d(a, b) : a ∈ A, b ∈ B

}
• Average linkage: D(A,B) = 1

|A||B|
∑

a∈A
∑

b∈B d(a, b)

• Centroid linkage: D(A,B) = d(µA, µB), where µS is mean of S.

Generally, dissimilarity increases monotonically with each level of merge, but centroid linkage
can cause inversions where a parent cluster is merged at a lower dissimilarity than its children.
Different decisions about intergroup dissimilarity can lead to vastly different dendrograms.
Single linkage is sensitive to outliers and can produce unbalanced trees. In contrast, complete
linkage leads to most balanced trees out of the intergroup dissimilarities introduced. The
comparisons between average linkage, complete linkage, and single linkage are illustrated in
Figure 1.7.
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Figure 1.7: Comparison of average, complete, and single linkages. Complete linkage yields
a well-balanced dendrogram while single linkage yields a relatively unbalanced dendrogram
[55].

Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a method for measuring the associations between
two sets of variables. Formally, given random vectors Xrv ∈ Rp and Yrv ∈ Rq with zero
means, CCA finds projection vectors a ∈ Rp and b ∈ Rq that maximizes the correlation
between X>rva and Y >rv b (Equation 1.21).

max
a,b

corr(X>rva, Y
>
rv b) = max

a,b

Cov(X>rva, Y
>
rv b)√

V ar(X>rva)V ar(Y >rv b)
(1.21)

The covariance term Cov(X>rva, Y
>
rv b) can be expressed in terms of Cov(Xrv, Yrv) by a similar

manipulation in Equation 1.4.

Cov(X>rva, Y
>
rv b) = E[(X>rva− E[X>rva])(Y >rv b− E[Y >rv b])]

= E[a>(Xrv − E[Xrv])(Yrv − E[Yrv])
>b]

= a>E[(Xrv − E[Xrv])(Yrv − E[Yrv])
>]b

= a>Cov(Xrv, Yrv)b

(1.22)
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Since V ar(Z) = Cov(Z,Z) for any random variable Z, V ar(X>rva) = a>Cov(Xrv, Xrv)a and
V ar(Y >rv b) = b>Cov(Yrv, Yrv)b. Thus, Equation 1.21 can be expressed as

max
a,b

corr(X>rva, Y
>
rv b) = max

a,b

a>Cov(Xrv, Yrv)b√
a>Cov(Xrv, Xrv)ab>Cov(Yrv, Yrv)b

(1.23)

Without access to true distributions of Xrv and Yrv, we estimate the covariance terms in
Equation 1.23 from data matrices X ∈ Rn×p and Y ∈ Rn×q. Here rows of X and Y are i.i.d.
samples xi ∈ Rp and yi ∈ Rq. Assume that each feature of X, Y have been centered to have
zero mean, then

Cov(Xrv, Yrv) = E[(Xrv − E[Xrv])(Yrv − E[Yrv])
>]

≈ 1

n

n∑
i=1

(xi − x̂)(yi − ŷ)>

=
1

n

n∑
i=1

xiy
>
i

=
1

n
X>Y,

(1.24)

where the approximation is due to law of large numbers. By similar reasoning, Cov(Xrv, Xrv) ≈
1
n
X>X and Cov(Yrv, Yrv) ≈ 1

n
Y >Y . Substituting these estimates, we arrive at an optimiza-

tion problem that can be solved with data in Equation 1.25.

max
a,b

corr(X>rva, Y
>
rv b) ≈ max

a,b

a>X>Y b√
a>X>Xab>Y >Y b

(1.25)

Some literature refer to a, b as canonical vectors and Xa, Y b as canonical variates. In Chapter
5, we use a special version of CCA called sparse CCA that induces sparsity in a, b, as a means
of summarizing the associations between gene expressions and drug sensitivities.

Convolutional Neural Network

Most of modern machine learning is focused on learning functions from data. Deep learning
involves choosing a loss function, a neural network architecture as the function approximator,
and optimizing the neural network weights with gradient descent. The convolutional neural
network is a class of neural network that imposes the following infinitely strong priors on its
weights:

• Shared weights for the same hidden activation layer.
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• Weights are zero except at the small, spatially contiguous receptive field assigned to
the hidden activation unit.

• Each hidden activation unit is invariant to small translations.

We start our introduction with fully-connected neural networks. Consider a supervised
learning problem with labeled training data points (x(1), y(1)), . . . , (x(m), y(m)), where x(i) ∈
Rn and y(i) ∈ R. The “neuron” is the most basic building block of a neural network (Figure
1.8).

Figure 1.8: A neuron is the basic computational unit of a neural network. In this example,
the neuron takes as input x1, x2, x3 and the intercept term, and outputs hW,b(x) ∈ R.

The computation in Figure 1.8 is hW,b(x) = f(W>x+ b), where f : R→ R is a nonlinear
activation function. Common choices for f(·) include the sigmoid, tanh, and ReLU functions,
each with its own impact on training. When f(·) is the sigmoid function, then the single
neuron in Figure 1.8 corresponds to logistic regression. Non-linear activation functions allow
neural networks to approximate nonlinear functions between input and output.

A neural network is comprised of many neurons, with output of a neuron serving as input
to the other. An example small neural network is illustrated in Figure 1.9.
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Figure 1.9: An example small neural network.

In Figure 1.9, circles denote inputs to the neural network. Circles labeled with “+1” are
called bias units. The leftmost layer of the network is the input layer, the rightmost layer is
the output layer, and the middle layers are called the hidden layers. A deep neural network is
sometimes defined as a neural network with more than two hidden layers. The neural network
in Figure 1.9 has trainable weights (W, b) = (W (1), b(1),W (2), b(2)), where W (l) ∈ Rp×k denotes
the weights associated with layer l and b(1) ∈ Rp denotes bias associated with layer l. We
use a

(l)
i ∈ R to denote the activation (i.e. output) value of neuron i in layer l. For example,

for the first layer l = 1, a
(1)
i = xi. The computations performed by the network in Figure

1.9 are

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 ) = f(z

(2)
1 ) (1.26)

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2 ) = f(z

(2)
2 ) (1.27)

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3 ) = f(z

(2)
3 ) (1.28)

hW,b(x) = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 +W

(2)
13 a

(2)
3 + b

(2)
1 ) = f(z

(3)
1 ). (1.29)

Equations 1.26 to 1.29 can be more compactly written as

z(2) = W (1)x+ b(1) (1.30)

a(2) = f(z(2)) (1.31)

z(3) = W (2)a(2) + b(2) (1.32)

hW,b(x) = a(3) = f(z(3)) (1.33)



CHAPTER 1. INTRODUCTION 20

Before training, the weights (W, b) of a neural network are initialized randomly. The
weights of a neural network are typically trained using stochastic gradient descent using
a random batch of training samples at each iteration. Given the loss value L, the weight
updates at each iteration are

W (l) := W (l) − α ∂L
∂W (l)

(1.34)

b(l) := b(l) − α ∂L
∂b(l)

, (1.35)

where α is the learning rate. The partial derivatives in Equations 1.34 to 1.35 are efficiently
computed using the backpropagation algorithm.

A convolutional neural network (CNN) starts with convolutional layers instead of full-
connected layers. A convolutional layer implements the infinitely strong priors mentioned in
the beginning of this section. CNNs are probably best understood in the context of computer
vision, where the input data are images with dimensions m × n × 3. A convolutional layer
typically carries out the following computations in the order listed

1. Convolution

2. Nonlinearity

3. Pooling

In CNNs, convolution involves sliding a filter (i.e. kernel) of fixed dimension across the
input and outputting an activation value via each dot product with the overlapping input.
These filters belong to the set of weights the CNN has to train. A 2D convolution is illustrated
in Figure 1.10.
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Figure 1.10: 2D convolution illustration [56].

Each filter results in a 2D activation map. A layer with k filters results in k such 2D activation
maps. Thus, convolution implements the first two infinitely strong priors mentioned. The
non-linearity step involves applying a nonlinear function element-wise to the activation maps.
Pooling involves extracting a summary statistic from a fixed region of values. The most
common pooling operation is max-pool, which extracts the maximum value of the input
region. This operation is illustrated in Figure 1.11.

Figure 1.11: Max-pooling operation.
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Pooling makes the representation approximately invariant to small translations of input. To
gain intuition on how convolutions are helpful, the filters in a CNN can be thought of as being
trained to detect certain features. In classical computer vision, edges are important features
to detect because they outline the shape of objects in an image. Researchers used to design
filters to detect edges of a certain orientation, such that these filters output a high value
when a dot product is performed over a region containing an edge. The resulting activation
map after convolving such a filter over an image is a dark image with edges outlined in white.
An example hand-crafted filter is the Prewitt filter for detecting vertical edges

Prewitt filter : M =

−1 0 1
−1 0 1
−1 0 1


What researchers have found in CNNs is that many filters become trained to detect edges
through the backpropagation algorithm. Thus, CNNs are able to learn filters for detecting
important features without explicitly designing the filters. Again using an example from
computer vision, pooling is helpful when we consider small translations of an object in
an image to be equivalent. After starting out with a few convolutional layers for feature
extraction, CNNs typically end with a few full-connected layers for final prediction. Chapter
6 provides a study using a 1D CNN to simultaenously impute allele haplotypes across the
HLA loci HLA-A, -B, -C, -DQA1, -DQB1, -DPA1, -DPB1, and -DRB1 from phased SNP
genotype data.
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Chapter 2

Admixture Mapping Reveals
Evidence of Differential Multiple
Sclerosis Risk by Genetic Ancestry

2.1 Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that results
in demyelination and tissue loss. Association studies in White, non-Hispanic populations
have discovered human leukocyte antigen (HLA) alleles conferring strong risk and protective
effects and 200 non-HLA genetic risk variants conferring modest risk of MS [57, 58]. Evidence
that HLA class II alleles interact to confer greater risk of MS have been found [59]. Together,
identified MS genetic risk factors are estimated to explain up to 30% of total heritability, of
which most is accounted for by HLA alleles [57, 60].

The prevalence of MS varies across the globe but is highest in White, non-Hispanic pop-
ulations. There is evidence that African Americans are at higher risk for developing the
disease, and along with Hispanics, may have a more severe disease course. Incidentally,
countries with majority White, non-Hispanic individuals and experience highest MS preva-
lence are located at higher latitudes. Past studies have not only established the association
between ultraviolet radiation and MS prevalence, but have also found evidence supporting
the causal role of low vitamin D on MS risk. In this study, we investigate another hypoth-
esis—that the difference in MS prevalence across the globe can be explained by European
ancestry. If European ancestry can explain this difference, then MS-associated alleles in ad-
mixed individuals can either be European or confer increased risk on a European haplotype
compared to a non-European haplotype.

We investigate this by analyzing the genetic ancestry of MS-associated alleles in a large
combined cohort totaling 1,471 MS cases and 10,913 controls including African American,
Asian American, and Hispanic individuals. Previous studies have been able to replicate the
association of the HLA risk allele HLA-DRB1*15:01 in nearly all populations [61]. Addi-
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tional HLA alleles have been found to be associated with MS in non-European populations,
such as HLA-DRB1*15:03 in African Americans and HLA-DRB1*04:05 in the Japanese
population [62]. Limited replication has been achieved for non-HLA genetic risk variants
in other populations [63–65]. We found that most MS-associated alleles are cosmopolitan,
but there is evidence that European risk alleles may confer more risk than non-European
risk alleles, most notably for the major risk allele HLA-DRB1*15:01. Thus, there is evi-
dence that the difference in MS prevalence could be explained by European ancestry. We
also tested for the association of European ancestry with MS across the genome in African
Americans, Asian Americans and Hispanics, and found a signal of association on chromosome
8 in Hispanics.

2.2 Materials and Methods

Sample Collection and Genotyping

Genotype data from a total of 21,647 subjects were collected from the Northern and South-
ern California Kaiser Permanente memberships, the U.S. Pediatric MS Network, the Genetic
Epidemiology Research on Aging (GERA) cohort, and International Multiple Sclerosis Ge-
netics Consortium (IMSGC). Table 2.1 shows the starting number of MS cases and controls
by dataset. All cases met the diagnostic criteria for MS [66, 67]. Subjects from Northern
California Kaiser Permanente and U.S. Pediatric MS Network were genotyped on the Illu-
mina Human660W-Quad BeadChip, Infinium Human OmniExpress BeadChip, and Infinium
Human OmniExpress Exome BeadChip. Subjects from Southern California Kaiser Perma-
nente were genotyped on OmniExpress platforms. The 1,265 African American subjects from
IMSGC were genotyped using the Illumina Immunochip and combined with other African
Americans to study the ancestry of the major histocompatibility complex (MHC) region [64].
Note that IMSGC subjects were not genotyped genome-wide and were thus excluded from
the genome-wide studies in this paper.

Source Case (n) Control (n)
Northern California Kaiser Permanente 1,069 637
Southern California Kaiser Permanente 645 636
U.S. Pediatric MS Network 792 413
IMSGC ImmunoChip 803 462
Genetic Epidemiology Research on Aging 0 16,168
Total 3,320 18,327

Table 2.1: Dataset sources for admixed populations. Starting number of cases and controls
for each dataset source. n = number of individuals

.
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Genotyping details for the GERA cohort are described elsewhere [68]. All genetic coordi-
nates were converted to NCBI Build 37 before analysis. BEAGLE was used to obtain phased
data for African Americans, Asian Americans, and Hispanics independently, using GRCh37
genetic map positions in centimorgans converted from GRCh37 genetic coordinates by BEA-
GLE utility software. Genetic map positions capture genetic linkage information and is used
by RFMix for defining windows for local ancestry assignment. The reference panel used
for phasing was constructed from selecting individuals from 1000 Genomes with ancestries
present in each admixed population [9, 69]. The ancestries represented in our dataset were
European (present in all groups), African (present in African Americans and Hispanics),
East Asian (present in Asian Americans), and Native American (present in Hispanics).

Imputation

Genome-wide imputation of the dataset against the entire 1000 Genomes phase 3 reference
panel was carried out using IMPUTE2 [69, 70]. For HLA imputation, SNP2HLA was used
to perform 2-field imputation of alleles for HLA-A, HLA-B, HLA-C, DRB1, and DQB1 us-
ing an admixed reference panel from the 1000 Genomes Project, comprised of 165 Native
Americans, 155 Africans, 251 East Asians, and 303 Europeans [69, 71, 72]. The reference
panel was tailored to contain ancestries represented by the target population to enhance im-
putation accuracy, and HLA alleles in each admixed population were imputed independently
as previously described [73].

Quality Control

SNPs were filtered for minor allele frequency (> 0.01) and missingness on SNPs and sam-
ples (> 0.10) before and after imputation with IMPUTE2. Genotype probabilities from
IMPUTE2 were converted to hard genotype calls using > 0.6 as the threshold, and SNPs
were filtered for info score > 0.30. Additionally, A/T and C/G SNPs were discarded prior
to local ancestry inference to avoid strand ambiguity. Related individuals (π̂ > 0.25) were
removed from further analysis by identity-by-state, resulting in a total of 20,588 samples.
For HLA imputation using SNP2HLA, we removed alleles with R2 scores less than 0.80 and
with allele frequencies below 0.005 from further analysis, filtering out 40, 66, and 63 HLA
alleles to result in 70, 47, and 77 HLA alleles for African Americans, Asian Americans, and
Hispanics, respectively. All quality control (QC) steps were performed using the PLINK
software and R v3.3.1 (www.r-project.org) [74].

Analysis of Population Structure

Population structure was assessed using multidimensional scaling (MDS) and fastSTRUC-
TURE prior to genotype imputation in order to divide the samples into African American,
Asian American, or Hispanic groups for further analysis [75]. MDS components captured
ancestry to identify individuals likely to be African American, Asian American, or Hispanic,

www.r-project.org
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using reference populations from the Human Genome Diversity Project (HGDP) [76]. Sub-
jects that cluster with the European reference samples were identified as White, non-Hispanic
and subsequently removed. Then, fastSTRUCTURE was used for each group to estimate
global admixture proportions for individuals using independent SNPs and a HGDP refer-
ence panel tailored to the target population, with default parameters. A cutoff of at least
5% Native American global ancestry for Hispanics was imposed to further remove White,
non-Hispanic individuals who were removed based on MDS. The 1,163 candidate Hispanic in-
dividuals who did not meet this requirement had an average 0.7% Native American ancestry
and 96% European ancestry.

Local Ancestry Inference

We inferred local ancestry genome-wide separately for African Americans, Asian Americans,
and Hispanics using RFMix software analysis of imputed and phased genotype data, and a
reference panel from the 1000 Genomes Project tailored to the target population [8, 69]. The
1000 Genomes reference panel was selected over the HDGP reference panel as the appropri-
ate reference because it has the required high genotype density for local ancestry inference.
RFMix was run on recommended input parameters of 5 minimum number of reference hap-
lotypes per tree node and 3 EM iterations. The number of generations of admixture used as
input parameters for RFMix were 5, 6, and 11 for Asian Americans, African Americans, and
Hispanics, respectively, according to previous estimates for populations in the United States
[77].

Statistical Analysis

Association testing between case status and genetic ancestry was performed using the non-
parametric test statistic proposed by Montana and Pritchard for admixture mapping [78].

T (l, k) =
(z̄l,d(k)− z̄l,c(k))− (q̄d(k)− q̄c(k))

SD(zl,d(k)− zl,c(k))
(2.1)

Briefly, the term z̄l,d(k) represents the average local ancestry of cases at locus l for ancestry
k and z̄l,c(k) is similarly defined for controls. The term q̄d(k) represents the genome-wide
average of ancestry k among cases and q̄c(k) is defined similarly for controls. Genome-wide
ancestry estimates for this statistic are taken from local ancestry estimates from RFMix.
This test statistic can be used to test for ancestry association at a single locus or at a
region. Under the null, the test statistic follows the normal distribution and a p-value can
be obtained through a z-test. The variance V ar(z̄l,d(k) − z̄l,c(k)) of the test statistic at a
given locus was empirically estimated as the sum of variance of average ancestry among
cases and controls (see Appendix A.1). The standard deviation follows as the square root of
the variance. The estimation of SD(z̄d,l(k)− z̄c,l(k)) corresponds to estimating the standard
deviation of the average treatment effect, with disease status as treatment and ancestry as
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outcome [79]. All terms of the test statistic were estimated from local ancestry estimates
from RFMix. Complete details are described elsewhere [78].

Multivariate logistic regression was applied to evaluate the association of genetic variants
with MS, using an additive model and adjusting for the first three MDS components to
control for population stratification [64, 65]. ORs were used to characterize effect sizes
of MS risk alleles. The Wilcoxon test was used to evaluate significance of global admixture
proportion differences between cases and controls. All analyses were performed using PLINK
and R v3.3.1 (www.r-project.org) [74].

Multiple hypothesis testing was addressed with Bonferroni correction. Bonferroni cor-
rection was used to establish significance for the study of non-HLA alleles, and adjusted
p-values were provided for all multiple testing scenarios except when the number of tests is
ten or less. For genome-wide association studies (GWAS), a significance level of α = 0.05
with 15,282 tests results in a genome-wide significance level of 3.27×10−6. Bonferroni correc-
tion was applied independently for the studies of African Americans, Hispanics, and Asian
Americans.

Since local ancestry assignments span multiple loci, we reduced the burden of multiple
hypothesis testing for ancestry association across the genome by only testing one locus per
window defined by RFMix for inferring local ancestry, resulting in a total of 15,282 tests
genome-wide. Complete details of how RFMix defines windows for local ancestry inference
is described elsewhere [8].

Power Calculations

Power calculations are performed with the Genetic Association Study Power Calculator
(http://csg.sph.umich.edu/abecasis/cats/gas power calculator/), which implements calcula-
tions from Skol et al [80]. We assume an additive disease model, a MS prevalence of 0.1%
in the United States, significance level of 5%, and disease allele frequency of 10% [81]. For
HLA alleles, we assume a relative risk of 2, and a relative risk of 1.2 for non-HLA alleles.

Comparison of SNP and Amino Acid Subsequences

SNPs and amino acids (AAs) imputed by SNP2HLA for European and African HLA-
DRB1*15:01 alleles in African Americans were aligned to the UCSC Genome Browser
GRCh38 RefSeq Genes track, and the European subsequences were compared to the African
subsequences. Note that “subsequence” refers to only the imputed SNPs and AAs, and not
to contiguous DNA or AA sequence.

www.r-project.org
http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/
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2.3 Results

Analysis of Population Structure

We performed MDS analysis on genotype data from 21,647 subjects to generate components
used to control for population stratification in later analyses (Figure 2.1A). This analysis
was done separately for African American samples which were genotyped using the Illu-
mina Immunochip (Figure 2.1B). The first three components were sufficient to differentiate
global ancestries and broadly categorize samples as African Americans, Asian Americans,
or Hispanics. Component 2 was correlated with African ancestry in African Americans
(R = 1.00, p < 0.01), component 1 was correlated with Native American ancestry in His-
panics (R = −0.95, p < 0.01), and component 1 was correlated with East Asian ancestry in
Asian Americans (R = 0.99, p < 0.01).
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Figure 2.1: Multidimensional Scaling Analysis of Study Subjects with HGDP Reference
Samples. (A) Study subjects from Northern California Kaiser Permanente, Southern Cali-
fornia Kaiser Permanente, U.S. Pediatric MS Network, Genetic Epidemiology Research on
Aging datasets, and (B) IMSGC Immunochip.

We used fastSTRUCTURE to estimate global admixture proportions for individuals from
each admixed population. After eliminating White, non-Hispanic individuals and Hispanics
with less than 5% Native American ancestry, a total of 3, 692 African Americans, 4, 915 Asian
Americans, and 3, 777 Hispanics comprised the final dataset (Table 2.2). African Americans
were estimated to be 76.1% African and 23.9% European on average, Asian Americans
were estimated to be 92.2% East Asian and 7.8% European on average, and Hispanics were
estimated to be 68.4% European, 28.8% Native American, and 2.8% African on average, in
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line with published estimates [77].

Population Case (n) Control (n)
African Americans 1,081 2,611
Hispanics 326 3,451
Asian Americans 64 4,851

Table 2.2: Number of cases and controls by admixed population. Number of MS cases
and controls for African American, Hispanic, and Asian American datasets, after removing
related individuals (π̂ > 0.25), White, non-Hispanic subjects, and Hispanics with less than
5% Native American ancestry. n = number of individuals.

The average global admixture for MS cases and controls is shown in Figure 2.2. We
observed significant differences in global admixture proportions between cases and controls
across all populations. African American cases had 5.0% increased African ancestry com-
pared to controls (p < 0.01); Hispanic cases had 5.4% increased Native American ancestry
(p = 0.02) and 11.3% decreased European ancestry (p < 0.01) compared to controls. Asian
American cases had 23.0% increased European ancestry compared to controls (p < 0.01).
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Figure 2.2: Global admixture proportions of study subjects. Global admixture proportion
estimates by fastSTRUCTURE with HGDP reference samples. Proportions are shown by
case/control status and with cases and controls combined for (A) African Americans, (B)
Hispanics, and (C) Asian Americans. The x-axis label “All” denotes admixture proportions
for cases and controls combined. See Table 2.2 for the sample numbers corresponding to
each admixed population.

Ancestry Association at the MHC

In previous studies, up to eleven regions within the MHC have been identified to exhibit
statistically significant independent effects of association with MS in White, non-Hispanic
populations: six HLA-DRB1, one HLA-DPB1, one HLA-A, two HLA-B alleles, and one
signal in a region spanning from MICB to LST1 [82]. We tested each of these regions, in
addition to regions spanned by DQB1 and HLA-C and the broader regions class I, II, and
III, for evidence of increased European ancestry in MS cases compared to controls. Results
are summarized in Tables 2-4 and shown in Fig 3. In African Americans, cases exhibited
increased European ancestry at the MHC region compared to controls, after accounting for
global admixture proportion differences, with genes in the class I region and the MICB-
LST1 region reaching statistical significance (p < 0.05). In Hispanics, the direction of
association was the same as in African Americans, but none of the regions reached statistical
significance. In Asian Americans, the cases had decreased European ancestry at the MHC
region compared to controls, with the regions HLA-DQB1 and HLA-DRB1 demonstrating
evidence for statistical significance (p < 0.05).
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MHC Region z̄l,d(k)− q̄d(k) z̄l,c(k)− q̄c(k) z score P-value
HLA-A 9.12E−3 −1.32E−2 2.04 2.06E−2
Class I 8.78E−3 −1.19E−2 1.91 2.83E−2
MICB-LST1 8.66E−3 −1.09E−2 1.78 3.79E−2
HLA-B 8.19E−3 −1.11E−2 1.75 4.05E−2
HLA-C 9.12E−3 −9.96E−3 1.72 4.24E−2
Class III 8.84E−3 −8.59E−3 1.59 5.57E−2
DQB1 1.00E−3 −7.28E−3 1.57 5.80E−2
DRB1 1.00E−3 −7.28E−3 1.57 5.80E−2
Class II 9.70E−3 −6.27E−3 1.47 7.10E−2
DPB1 9.58E−3 −2.87E−3 1.13 1.30E−1

Table 2.3: European ancestry association with MS at regions of the MHC in African
Americans. Tests of European ancestry association with MS using test statistic for admixture
mapping, sorted by p-value. The column z̄l,d(k)− q̄d(k) represents difference in average local
and global European ancestry k proportions for cases d. The column z̄l,c(k)− q̄c(k) is defined
similarly as z̄l,d(k)− q̄d(k) for controls c. The z score is the admixture mapping test statistic
calculated as described in Materials and Methods.

MHC Region z̄l,d(k)− q̄d(k) z̄l,c(k)− q̄c(k) z score P-value
Class I −5.18E−2 −8.48E−2 1.57 5.76E−2
HLA-A −5.06E−2 −8.39E−2 1.55 6.11E−2
HLA-C −5.83E−2 −9.04E−2 1.51 6.51E−2
HLA-B −5.98E−2 −8.89E−2 1.38 8.43E−2
Class III −5.09E−2 −7.55E−2 1.22 1.12E−1
MICB-LST1 −6.29E−2 −8.60E−2 1.11 1.34E−1
DQB1 −4.60E−2 −6.72E−2 1.02 1.54E−1
DRB1 −4.60E−2 −6.72E−2 1.02 1.54E−1
Class II −4.00E−2 −5.32E−2 0.66 2.54E−1
DPB1 −2.76E−2 −2.91E−2 0.07 4.71E−1

Table 2.4: European ancestry association with MS at regions of the MHC in Hispanics.
Tests of European ancestry association with MS using test statistic for admixture mapping,
sorted by p-value. The column z̄l,d(k)− q̄d(k) represents difference in average local and global
European ancestry k proportions for cases d. The column z̄l,c(k)− q̄c(k) is defined similarly
as z̄l,d(k)− q̄d(k) for controls c. The z score is the admixture mapping test statistic calculated
as described in Materials and Methods.
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MHC Region z̄l,d(k)− q̄d(k) z̄l,c(k)− q̄c(k) z score P-value
DQB1 −1.60E−2 5.98E−2 -1.67 4.80E−2
DRB1 −1.60E−2 5.98E−2 -1.67 4.80E−2
HLA-A −3.94E−2 3.21E−2 -1.56 5.94E−2
Class II −1.67E−2 5.35E−2 -1.52 6.39E−2
Class III −7.52E−3 5.83E−2 -1.48 7.00E−2
DPB1 −2.38E−2 4.32E−2 -1.43 7.69E−2
MICB-LST1 −8.18E−3 5.37E−2 -1.36 8.62E−2
Class I −1.90E−2 4.07E−2 -1.33 9.24E−2
HLA-B −3.69E−4 5.28E−2 -1.14 1.27E−1
HLA-C −3.69E−4 5.27E−2 -1.14 1.27E−1

Table 2.5: European ancestry association with MS at regions of the MHC in Asian Amer-
icans. Tests of European ancestry association with MS using test statistic for admixture
mapping, sorted by p-value. The column z̄l,d(k)− q̄d(k) represents difference in average local
and global European ancestry k proportions for cases d. The column z̄l,c(k)− q̄c(k) is defined
similarly as z̄l,d(k)− q̄d(k) for controls c. The z score is the admixture mapping test statistic
calculated as described in Materials and Methods.
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Figure 2.3: Deviation of local from global European ancestry at MHC, plotted for cases
and controls. The red vertical bars denote borders of class I, II, and III of the MHC. Local
and global ancestries are estimated with RFMix. For both (A) African Americans and (B)
Hispanics, cases tended to have higher European ancestry than controls at the MHC. For
(C) Asian Americans, cases tended to have lower European ancestry than controls at the
MHC.
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Ancestry of MS-Associated HLA Alleles

We investigated the ancestry of MS-associated HLA alleles to determine whether ancestry
associations observed at the regions within the MHC could be explained. We first identified
HLA alleles associated with MS in each admixed group using additive multivariate logistic
regression, adjusting for the first three MDS components. We observed 14 alleles in African
Americans, 15 alleles in Hispanics, and 4 alleles in Asian Americans that reached nominal
significance of association (p < 0.05). HLA-DRB1*15:01, the strongest genetic association
with MS observed in White, non-Hispanic individuals, to date, was a top signal across all
three admixed populations, consistent with previous findings [61]. As expected, the African
allele HLA-DRB1*15:03 was significantly associated with MS in African Americans [83].
In African Americans, we further replicated the association of HLA risk alleles previously
established in the White, non-Hispanic population: HLA-DRB1*03:01, HLA-A*02:01, HLA-
DRB1*14:01, and HLA-B*38:01 at nominal level significance (p < 0.05) [82]. In both
Hispanics and Asian Americans, HLA-DRB1*15:01 is the only established HLA risk alleles
in White, non-Hispanics that was replicated. Figure 2.4 compares the p-values of significant
MS-associated HLA alleles across different populations. With our sample sizes, we estimate
close to 100% power of detection for African Americans and Hispanics and 80% power for
Asian Americans. Assuming the MS HLA alleles found in the European population are also
associated with MS in admixed populations, then 6, 7, and 4 HLA alleles are expected to be
detected in African Americans, Hispanics, and Asian Americans respectively, post quality
control.
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Figure 2.4: Comparison of MS-Associated HLA alleles across populations. P-value heat
map for HLA alleles that reached Bonferroni significance in either Asian Americans, African
Americans, Hispanics, or White, non-Hispanic individuals. P-values of HLA alleles associ-
ated with MS in White, non-Hispanic individuals that were already established in previous
work [82]. The HLA allele HLA-DRB1*15:01 was most consistently associated with MS
across all four populations, followed by HLA-DRB1*03:01. Gray (NA) denotes an HLA
allele that is missing due to not being present in the population or failed to pass HLA
imputation QC.

Next, we estimated the admixture proportions of all the nominally-associated alleles using
local ancestry estimates from RFMix. Analysis of HLA alleles and corresponding admixture
proportions are shown in Tables 2.6 to 2.8, and Figure 2.5. Ancestry estimates for HLA
alleles previously established to be ancestry-specific were in strong agreement: 98.4% East
Asian for the East Asian allele HLA-DRB1*04:05 in Asian Americans (n = 692 alleles),
96.2% European for the European allele HLA-DRB1*01:01 in Hispanics (n = 395 alleles),
96.4% Native American for Native American allele HLA-DRB1*14:02 in Hispanics (n = 454
alleles), and 99.5% African for African allele HLA-DRB1*15:03 in African Americans(n =
881 alleles) [84]. Most MS-associated HLA alleles are cosmopolitan across the admixed
populations. The MS risk allele HLA-DRB1*15:01, which is more common in Europeans,
was estimated to be 63.7% European in African Americans (n = 512 alleles) and 96.4%
European in Hispanics (n = 534 alleles) [85]. However, it is striking that HLA-DRB1*15:01
is 92.9% East Asian in Asian Americans (n = 1, 228 alleles).
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Allele N OR P-value Adj p-value EUR AFR
HLA-DRB1*15:01 512 2.00 (1.58-2.55) 1.26E−8 8.83E−7 0.64 0.36
HLA-DRB1*03:01 658 1.45 (1.22-1.72) 2.61E−5 1.83E−3 0.34 0.66
HLA-B*07:02 598 1.48 (1.23-1.78) 3.61E−5 2.53E−3 0.53 0.47
HLA-DRB1*15:03 881 1.37 (1.17-1.59) 8.11E−5 5.68E−3 0.00 1.00
HLA-DRB1*14:01 106 0.39 (0.22-0.70) 1.37E−3 9.58E−2 0.49 0.51
HLA-A*03:01 694 1.30 (1.10-1.54) 1.97E−3 1.38E−1 0.38 0.62
HLA-A*02:01 914 0.80 (0.68-0.94) 7.88E−3 5.51E−1 0.48 0.52
HLA-C*08:02 198 1.44 (1.07-1.94) 1.47E−2 1.00E0 0.21 0.79
HLA-B*55:01 45 0.24 (0.07-0.78) 1.74E−2 1.00E0 0.98 0.02
HLA-DRB1*13:01 476 0.76 (0.60-0.96) 2.09E−2 1.00E0 0.20 0.80
HLA-C*04:01 1704 0.87 (0.76-0.98) 2.35E−2 1.00E0 0.13 0.87
HLA-C*07:02 708 1.22 (1.02-1.45) 2.55E−2 1.00E0 0.48 0.52
HLA-B*38:01 43 0.28 (0.09-0.94) 3.87E−2 1.00E0 0.91 0.09
HLA-C*03:02 95 0.57 (0.33-0.98) 4.30E−2 1.00E0 0.00 1.00

Table 2.6: Ancestry of HLA alleles associated with MS in African Americans. HLA alleles
that were nominally associated with MS (p < 0.05) and their ancestry proportions estimated
from RFMix. Odds ratio (OR) of association for case-control comparison are also shown
along with their 95% confidence interval. All tested HLA alleles passed imputation quality
score (R2 > 0.80) and have allele frequencies greater than 0.005. N = number of alleles;
EUR = European; AFR = African; Adj p-value = Bonferroni adjusted p-value.
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Allele N OR P-value
Adj

p-value EUR AMR AFR

HLA-DRB1*15:01 534 2.45 (1.88-3.19) 2.59E−11
2.00E−9

0.96 0.02 0.02

HLA-DRB1*16:02 180 1.92 (1.23-2.99) 4.11E−3
3.17E−1

0.01 0.97 0.02

HLA-DRB1*13:01 314 0.47 (0.27-0.84) 1.13E−2
8.66E−1

0.81 0.03 0.17

HLA-C*04:01 1601 0.76 (0.61-0.95) 1.52E−2 1.00E0 0.22 0.68 0.10
HLA-DRB1*01:01 395 0.54 (0.33-0.89) 1.65E−2 1.00E0 0.96 0.01 0.03
HLA-B*08:01 318 1.54 (1.08-2.21) 1.71E−2 1.00E0 0.93 0.02 0.05
HLA-B*40:02 545 1.39 (1.05-1.84) 2.22E−2 1.00E0 0.09 0.91 0.00
HLA-DRB1*14:02 454 0.60 (0.39-0.94) 2.49E−2 1.00E0 0.03 0.96 0.01
HLA-C*08:02 327 1.52 (1.05-2.20) 2.53E−2 1.00E0 0.19 0.72 0.08
HLA-DRB1*09:01 160 0.39 (0.17-0.91) 2.90E−2 1.00E0 0.19 0.47 0.34
HLA-A*01:01 521 1.40 (1.03-1.91) 3.29E−2 1.00E0 0.97 0.02 0.00
HLA-C*07:02 976 1.28 (1.02-1.62) 3.55E−2 1.00E0 0.45 0.51 0.05
HLA-B*14:01 56 2.16 (1.03-4.55) 4.26E−2 1.00E0 0.95 0.00 0.05
HLA-B*81:01 47 2.38 (1.02-5.54) 4.44E−2 1.00E0 0.09 0.09 0.83
HLA-B*07:02 460 1.36 (1.00-1.85) 4.86E−2 1.00E0 0.90 0.05 0.06

Table 2.7: Ancestry of HLA alleles associated with MS in Hispanics. HLA alleles that were
nominally associated with MS (p < 0.05) and their ancestry proportions estimated from
RFMix. Odds ratio (OR) of association for case-control comparison are also shown along
with their 95% confidence interval. All tested HLA alleles passed imputation quality score
(R2 > 0.80) and have allele frequencies greater than 0.005. N = number of alleles; EUR =
European; AMR = American; AFR = African; Adj p-value = Bonferroni adjusted p-value.
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Allele N OR P-value Adj p-value EUR EAS
HLA-B*27:05 50 6.74 (1.92-23.66) 2.92E−3 1.34E−1 0.98 0.02
HLA-DRB1*15:01 1228 1.88 (1.19-2.99) 7.26E−3 3.34E−1 0.07 0.93
HLA-C*03:04 1687 1.69 (1.04-2.76) 3.43E−2 1.00E0 0.04 0.96
HLA-DRB1*12:02 1139 0.32 (0.11-0.94) 3.75E−2 1.00E0 0.00 1.00

Table 2.8: Ancestry of HLA alleles associated with MS in Asian Americans. HLA alleles
that were nominally associated with MS (p < 0.05) and their ancestry proportions estimated
from RFMix. Odds ratio (OR) of association for case-control comparison are also shown
along with their 95% confidence interval. All tested HLA alleles passed imputation quality
score (R2 > 0.80) and had allele frequencies greater than 0.005. N = number of alleles; EUR
= European; EAS = East Asian. Adj p-value = Bonferroni adjusted p-value.
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Figure 2.5: Admixture of HLA alleles associated with MS. Ancestry was inferred for MS-
associated HLA alleles that passed QC using RFMix. MS-associated alleles were significant
at the nominal level (p < 0.05), had imputation score R2 > 0.80, and had minor allele
frequency greater than 0.005. Other than HLA-B*55:01 in (A) African Americans, HLA-
DRB1*15:01, HLA-DRB1*16:02, HLA-DRB1*01:01, HLA-DRB1*14:02, HLA-A*01:01 in
(B) Hispanics, and HLA-B*27:05 and HLA-C*03:04 in (C) Asian Americans, HLA alleles
associated with MS were cosmopolitan.
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We searched for MS-associated HLA alleles that are potentially ancestry-specific, impos-
ing a 96% ancestry cutoff because we were able to correctly estimate the ancestry of HLA
alleles of known ancestry as 96% or greater. Briefly, we considered an MS-associated allele
as a candidate ancestry-specific allele if 96% of its ancestry comes from a single ancestry
across all admixed populations in which it exists, and/or is missing in the rest of admixed
populations. An allele could be missing because it does not exist in other ancestries (e.g.
African HLA-DRB1*15:03 ), or because it did not pass quality control for imputation. Using
this approach, we classified HLA-DRB1*14:02 and HLA-DRB1*16:02 as Native American
alleles, HLA-DRB1*15:03 as an African risk allele, HLA-DRB1*12:02 as an East Asian
allele, and HLA-B*55:01, HLA-B*27:05, and HLA-A*01:01 as European alleles.

Risk of MS between European and African HLA alleles in African
Americans

Given that African Americans exhibit two-way admixture and many MS-associated HLA
alleles in African Americans are relatively admixed, we studied the differential risk of HLA
alleles in African Americans based on ancestry. We first performed a case-control study of
the prominent MS risk allele HLA-DRB1*15:01 in African Americans to determine whether
there were any differences in risk conferred by HLA-DRB1*15:01 alleles of European and
African origin. We removed 12 alleles from the analysis, of which 6 were from cases and
6 were from controls, whose HLA-DRB1*15:01 allele was not inferred to be completely
European or African. Table 2.9 shows the final number of alleles by ancestry and by case
status. The risk of MS conferred by the European HLA-DRB1*15:01 allele was determined
from logistic regression to be three times higher compared to the African HLA-DRB1*15:01
allele (OR = 3.00, 95% CI: 1.90 − 4.76, p = 2.49 × 10−6), after adjusting for the first 3
MDS components. We restricted the logistic regression to alleles from individuals with one
copy of HLA-DRB1*15:01 so that the association was not confounded by number of HLA-
DRB1*15:01 alleles.

HLA-DRB1*15:01 Ancestry Case (n) Control (n)
European 129 191 319
African 43 137 180

171 328 499

Table 2.9: HLA-DRB1*15:01 of European origin confers greater risk of MS compared to
DRB1*15:01 of African origin. Two-by-two table of counts of HLA-DRB1*15:01 alleles by
ancestry and case/control status. The HLA-DRB1*15:01 allele passed imputation quality
score (R2 > 0.80) and had allele frequency greater than 0.005. Alleles that are not completely
European or African were removed.

We continued the same analyses for other alleles in Table 2.6. Alleles with a sample size
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less than 50 or with a predominant ancestry of more than 90% are excluded from the analysis.
This analysis further revealed that European HLA-B*07:02 (OR = 1.66, 95% CI: 1.12−2.47,
p = 1.18 × 10−2) and HLA-A*03:01 (OR = 1.54, 95% CI: 1.04 − 2.29, p = 2.97 × 10−2)
conferred a greater risk of MS compared to their African counterparts for p < 0.05. However,
for the risk allele HLA-DRB1*03:01, the European allele is protective (OR = 0.64, 95% CI:
0.43− 0.96, p = 3.03× 10−2) compared to the African allele. Hence, this provides additional
evidence that the European haplotype confers more risk of MS compared to the African
haplotype for other HLA alleles, although this is not true for every allele Table A.1.

SNP2HLA imputes SNPs and AAs for the exons of HLA alleles, with a 1-to-1 mapping be-
tween a SNP and AA subsequence (see Materials and Methods). Given that European HLA-
DRB1*15:01 conferred three times the odds of MS compared to African HLA-DRB1*15:01,
and without evidence that this finding was due to HLA-DQB1*06:02 (Tables A.2 to A.3),
we compared the most representative SNP and AA subsequences for European and African
HLA-DRB1*15:01 alleles to look for differences. A large majority (94.1%) of European
HLA-DRB1*15:01 alleles shared the same SNP and AA subsequences, whereas African
HLA-DRB1*15:01 subsequences were more diverse. Figure 2.6 shows the comparison of
the most frequent (94.1%) SNP and AA subsequence for European HLA-DRB1*15:01 al-
leles against the top two most frequent (59.4% and 27.8% respectively) subsequences for
African HLA-DRB1*15:01 alleles, respectively. All differences between the European sub-
sequence and the most frequent African subsequence were within exon 1. When compared
against the second most frequent African subsequence, differences were found in exons 1, 3,
and 6.

Figure 2.6: European and African HLA-DRB1*15:01 subsequence comparison. Compar-
ison of SNP and AA subsequences imputed by SNP2HLA for European and African HLA-
DRB1*15:01 alleles in African Americans. Note: subsequence implies the SNPs and AAs
are not necessarily contiguous. The subsequences were aligned by position (GRCh38) with
the UCSC genome browser NCBI gene track; the imputed positions correspond to exons 1-5
of HLA-DRB1. The top frequent (94.1%) SNP and amino acid subsequence for European
HLA-DRB1*15:01 was compared against the top two frequent (59.4% and 27.8%) subse-
quences for African HLA-DRB1*15:01. Red indicates a mismatch between any two given
positions between an African and European allele. AA = amino acid; EUR = European;
AFR = African.
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Ancestry Association at non-HLA MS Genetic Risk Loci

We evaluated the association of European ancestry with MS for 200 established non-HLA
genetic risk loci identified in White, non-Hispanic individuals. Following QC, 165 MS risk
variants were available in African Americans, 167 MS risk variants in Hispanics, and 154 MS
risk variants in Asian Americans for analysis. We tested each risk variant for association
with MS and tested each genetic locus for association between European ancestry and MS.
Increased East Asian ancestry in MS cases compared to controls for SNPs rs405343 (p =
5.53× 10−13) and rs6670198 (p = 6.13× 10−8) was observed in Asian Americans. No other
genetic risk locus showed evidence of increased ancestry in cases compared to controls in any
admixed population after adjustment for multiple tests. The risk allele T for SNP rs405343
was significantly associated with MS (OR=2.55, 95% CI: 1.70 − 3.83, p = 6.87 × 10−6)
in Asian Americans; however, the risk allele T for SNP rs6670198 showed no evidence for
association. A small proportion of MS risk alleles overall demonstrated a nominal level of
association at p < 0.05: 13 SNPs in African Americans, 21 SNPs in Hispanics, and 28 SNPs
in Asian Americans. With our sample sizes, the powers of detection for African Americans,
Hispanics, and Asians are estimated to be 21.5%, 26.5%, and 11.7%, respectively. Assuming
the established MS non-HLA alleles are also associated with MS in admixed populations,
then 35, 44, and 18 non-HLA alleles are expected to be detected in African Americans,
Hispanics, and Asian Americans respectively, post QC.

We determined whether European ancestry, both globally and locally at the non-HLA ge-
netic risk loci, was correlated with a cumulative genetic risk score in African American, Asian
American, and Hispanic MS cases. Figure 2.7 shows results for each admixed population.
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Figure 2.7: Plot of unweighted genetic risk score of the MS genetic risk variants passing
QC versus European ancestry globally and locally at the corresponding MS genetic risk loci.
All ancestries were estimated with RFMix. Panels (A), (C), and (E) show the relationship
between risk score and percentage European global ancestry for African Americans, His-
panics, and Asian Americans respectively. Panels (B), (D), and (F) show the relationship
between risk score and percentage European local ancestry calculated at the MS genetic risk
loci for African Americans, Hispanics, and Asian Americans respectively. There was little
correlation (R < 0.30; p-value > 0.05) between genetic risk score and European ancestry.

Globally, no evidence for significant correlation was observed in African Americans (R =
0.04, p = 0.47), Hispanics (R = 0.06, p = 0.30), or Asian Americans (R = 0.25, p = 0.05);
similar results were observed for local ancestry in all populations. Admixture estimates
showed that the majority of the non-HLA variants investigated here were cosmopolitan;
local admixture was reflective of global admixture patterns (Figure 2.8).
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Figure 2.8: Local ancestry estimates from RFMix for the non-HLA risk variants that
passed QC, sorted in order of increasing European ancestry. The admixture proportions of
risk variants were estimated separately in (A) African American cases, (B) African American
controls, (C) Hispanic cases, (D) Hispanic controls, (E) Asian American cases, and (F) Asian
American controls. The ancestry proportions of risk variants in cases and controls were
largely reflective of global admixture proportions in cases and controls, respectively.

Whole-genome Association Scan

We searched across the genome in African Americans, Asian Americans, and Hispanics to
identify regions where individuals with MS had a higher proportion of European ancestry
compared to controls using the test statistic in Equation 2.1. The Q-Q plots in Figure 2.9A
and Figure 2.9 show that the admixture mapping test statistics are approximately normally
distributed except at the tails. The test statistics are least normally distributed for Asian
Americans, which exhibits the most imbalance between cases and controls.



CHAPTER 2. ADMIXTURE MAPPING REVEALS EVIDENCE OF DIFFERENTIAL
MULTIPLE SCLEROSIS RISK BY GENETIC ANCESTRY 46

Figure 2.9: Q-Q plot of admixture mapping test statistic for (A) African Americans, (B)
Hispanics, and (C) Asian Americans. The line y = x represents the theoretical Q-Q plot if
the test statistics are perfectly normally distributed.

The strongest peak of association observed was identified in a single region at chromosome
8 from 207, 207−314, 620 (GRCh37) in Hispanics that corresponds to an increase in European
ancestry in cases compared to controls (Figure 2.10). This is the only peak that reached
genome-wide significance with a Bonferroni adjusted p-value of 3.36 × 102. The closest
gene to this region is ZNF596, a zinc finger protein 9.8 kb downstream that is most highly
expressed in the brain and cerebellum out of 20 different human tissues whose total RNA
was sequenced [85].
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Figure 2.10: Genome-wide association of European ancestry with MS. P-values from test-
ing of association between European ancestry and MS using non-parametric test statistic
proposed by Montana and Pritchard, as described in Materials and Methods. One locus was
selected from each 0.2 cM window used by RFMix for ancestry inference to reduce the burden
of multiple hypothesis testing, resulting in 15, 282 tests. The red horizontal line indicates
the negative log of the Bonferroni p-value (p = 3.27 × 10−6) for establishing significance.
(A) None of the loci tested for African Americans demonstrated evidence for significant as-
sociation. (B) In Hispanics, a region spanning from 2Mb to 3Mb on chromosome 8 showed
evidence for a significant association. (C) None of the loci tested for Asian Americans were
significantly associated.
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2.4 Discussion

The genetic contribution to MS susceptibility is very complex; most studies have focused
on populations of Northern European descent, and to date, the involvement of genes within
and outside the MHC region has been established. Admixed individuals are derived from
distinct ancestral populations; global and local genetic ancestry estimates can be used to
test for association between the genome, a genetic locus or specific allele and a phenotype
of interest [83, 86, 87]. This is one of the first studies to examine the relationship between
genetic ancestry, HLA and non-HLA alleles and MS in three admixed populations: African
Americans, Hispanics, and Asian Americans.

Within the MHC, we were first able to replicate the association of some previously es-
tablished HLA risk alleles with MS [82]; HLA-DRB1*15:01 was the most significant finding
across all three admixed populations [61]. Here, the ORs for HLA-DRB1*15:01 observed
in admixed populations (1.88–2.45) were slightly lower than described in previous reports
for White, non-Hispanic individuals (2.92) [82], but the direction of effect is consistent. In
African Americans, we further replicated the association and direction of effect of HLA alle-
les previously established in the White, non-Hispanic population: HLA-DRB1*03:01, HLA-
A*02:01, HLA-DRB1*14:01, and HLA-B*38:01 at nominal level significance (p < 0.05)
[82]. Additionally, we replicated the African HLA risk allele HLA-DRB1*15:03 in African
Americans [65]. A similar study by Isobe, et al. also replicated the association of HLA al-
leles HLA-DRB1*15:01, HLA-DRB1*03:01, HLA-DRB1*15:03, and HLA*02:01. Although
HLA-DRB1*14:01 was not found by Isobe to be significantly associated (p = 0.070), its
protective effect is consistent with what is observed in this study. In summary, we detected
association for 5 of the 6 established HLA MS alleles expected to be replicated under power
calculations, and this supports the hypothesis that the MS genetic risk in African Americans
partially overlaps with that of Europeans [65]. In both Hispanics and Asian Americans,
HLA-DRB1*15:01 is the only established HLA risk allele in White, non-Hispanics that was
replicated [82], which suggests a smaller overlap in MS genetic risk between Hispanics and
Asian Americans with that of Europeans.

At a nominal level of significance (p < 0.05), analysis of the HLA alleles identified
five candidate risk alleles and four candidate protective alleles for African Americans, nine
candidate risk alleles and four candidate protective alleles for Hispanics, and two candidate
risk alleles and one candidate protective allele for Asian Americans. All directions of effect
(risk or protective) of candidate MS HLA alleles are the same if found in more than one
admixed population. In total, four of the nine protective HLA alleles novel in this study for
MS belong to class I genes and five are class II DRB1 alleles. It is plausible that the lower
prevalence of MS in some admixed populations could be partially explained by the effects of
protective alleles.

Of the significantly associated HLA haplotypes and alleles reported by Mack, et al. in
Europeans, three were nominally associated with MS in at least one admixed population in
this study [88]. In particular, the HLA-DRB1*03:01 and HLA-A*02:01 alleles in African
Americans exhibited similar ORs and direction of effect (Table 2.6). However, the HLA-
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C*03:04 allele in Asian Americans conferred risk (OR = 1.69) instead of a protective effect
(Table 2.8). It is plausible that this disagreement is because an overwhelming majority
(95.7%) of HLA-C*0304 alleles in Asian Americans are of East Asian origin in this study,
while the investigation by Mack, et al. was in European Americans (Figure 2.5C, Table 2.8).
The exon differences observed between European and African HLA-DRB1*15:01 suggests
that future high-resolution HLA analysis could further explain the differences in risk and
protective effects that is due to ancestry.

The entire MHC region spanning 29, 570, 005− 33, 377, 701 (GRCh37) had a higher pro-
portion of European ancestry in MS cases compared to controls for both African American
and Hispanic populations. In Asian Americans, the MHC region had a higher proportion of
East Asian ancestry in cases compared to controls. Interestingly, the local MHC ancestry
associations observed in the current study for African Americans and Hispanics contrasted
with global ancestry—African American and Hispanic cases demonstrated less European an-
cestry compared to controls when the whole genome was taken into consideration, and Asian
American cases demonstrated more European ancestry compared to controls. To investigate
these associations further, we characterized the admixture proportions of MS-associated HLA
alleles. Figure 2.5 shows that a majority of HLA alleles, including HLA-DRB1*15:01, were
inferred to exist in multiple ancestries and could thus be considered cosmopolitan. African
American cases were not significantly European at the class II region compared to controls
likely due to the contribution of the common African allele HLA-DRB1*15:03. In Asian
Americans, HLA-DRB1*15:01 and HLA-C*03:01 conferred risk of MS and accounted for
68.6% of HLA alleles associated with MS. Together, these two alleles had an average of 94.7%
East Asian ancestry which helps explain why cases tended to have a higher proportion of
East Asian ancestry compared to controls within the MHC region.

We find it noteworthy that the European HLA-DRB1*15:01 allele confers three times the
odds of MS compared to the African HLA-DRB1*15:01 allele in the African Americans we
studied. A similar effect has been observed for European HLA-B*07:02 and HLA-A*03:01.
Together these findings provide evidence that in some genetic regions, the European haplo-
type could confer more risk of MS than haplotypes derived from other ancestries. In these
cases, it is plausible that disease-causing genetic variants can come from only one ances-
tral population. However, it must be noted that this has not been found to be true for all
admixed MS-associated alleles we examined (Table A.1), and that for alleles such as the
African MS risk allele HLA-DRB1*15:03, the African haplotype confers more risk than the
European haplotype. These findings together further highlight the complex genetic ancestry
of MS-associated alleles in admixed populations.

Given that HLA-DRB1*15:01 is in very strong linkage disequilibrium with HLA-DQB1*06:02
in Europeans, we investigated whether the increased risk of MS in African Americans con-
ferred by European HLA-DRB1*15:01 could possibly be due to HLA-DQB1*06:02, de-
spite the limitation that HLA-DQB1 did not pass our imputation quality cutoff (average
R2 = 0.53 across all DQB1 alleles). As expected, 99.5% of HLA-DRB1*15:01 haplotypes
that include HLA-DQB1*06:02 in African Americans are of European ancestry. Table A.1
shows that HLA-DQB1*06:02 was not associated with MS in African Americans (OR =
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1.14, 95% CI: 0.68-1.92, p = 0.72). Further, Table A.3 shows that comparison of European
HLA-DQB1*06:02 alleles with African HLA-DQB1*06:02 alleles, in the absence of HLA-
DRB1*15:01, did not demonstrate evidence for a significant association (OR = 0.48, 95% CI:
0.23-1.00, p = 0.07); the direction of effect is, in fact, protective. Results from the current
study are consistent with a previous report showing the association of MS with the HLA-
DRB1*15:01-DQB1*06:02 haplotype is due to the DRB1 locus independent of DQB1*06:02
[89].

A comparison of the most commonly imputed SNP and AA subsequences between Euro-
pean and African HLA-DRB1*15:01 alleles revealed mismatches at exons 1, 3, and 5. Each
of these exons help encode the DR beta 1 heterodimer, with exon 1 encoding the leader pep-
tide and exon 5 encoding the cytoplasmic tail of the membrane protein. Exon 3, together
with exon 2, encode the two extracellular domains [90]. Further investigation into whether
genetic variation in these exons have functional consequences for peptide presentation in the
context of MS is warranted. Our case study of HLA-DRB1*15:01 illustrates how admixture
mapping can be broadly applied to better characterize risk alleles in admixed populations.

Consistent with previous attempts to replicate the association of non-HLA genetic risk
variants, we also failed to replicate association of most non-HLA genetic risk variants across
all three admixed populations, except for rs405343 and rs6670198 in Asian Americans, which
exhibit the same direction of effect as in whites [63–65]. Without correction for multiple test-
ing with significance established at p < 0.05, we replicated the association of 13 SNPs in
African Americans, 21 SNPs in Hispanics, and 28 SNPs in Asian Americans. For African
Americans and Hispanics, we replicated less associations than is expected under power cal-
culations. For Asian Americans, more associations were replicated than is expected. The
majority of non-HLA MS risk variants identified so far appears to be cosmopolitan and their
observed ancestry proportions are reflective of global admixture proportions (Figure 2.8).
European global ancestry and European local ancestry at the non-HLA genetic risk loci was
not correlated with the unweighted genetic risk score comprised of the non-HLA variants
(Figure 2.7). Although our investigation showed that the majority of non-HLA MS genetic
risk variants reported for the White, non-Hispanic population do not demonstrate strong
associations with MS in African Americans, Asian Americans, and Hispanics, our study is
under-powered to detect most associations. Besides lacking power due to small sample and
effect sizes, there are multiple other explanations for why we may fail to replicate many
associations of the non-HLA genetic risk variants with MS [65]. One explanation is that
differences in minor allele frequencies reduced the power to detect associations in admixed
populations. Another explanation is that the smaller haplotype blocks of African Ameri-
cans and Hispanics may have caused many non-HLA genetic risk variants to fail tagging
the putative causative variant of MS. Lastly, the absence of replication could simply be due
to genetic heterogeneity across populations, which further justifies the need for GWAS in
non-White populations.

A genome-wide search for European ancestry differences between MS cases and controls
in all three admixed populations resulted in one region of chromosome 8 from 207, 207 to
314, 620 (GRCh37) in Hispanics only. The closest gene to this region is ZNF596, a zinc
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finger protein 9.8 kb away that is highly expressed in the brain and cerebellum. Lesions in
brain tissue as well as brain atrophy are pathological hallmarks of MS [91], and available
data suggest Hispanics may have a more severe disease course than White, non-Hispanic
individuals [92]; however, these findings await replication. Further investigation of this
region in a larger independent dataset and full interrogation of nearby genes and determining
whether ZNF596 could be involved in MS pathogenesis from a functional perspective are
warranted.

Some important strengths of this study included comprehensive analyses of a large, well-
characterized dataset comprised of 12, 384 admixed MS cases and controls with high quality
genetic data, the application of rigorous QC procedures, genetic imputation methods for both
SNP and HLA loci, probabilistic graphical modeling for local admixture estimation across
the genome, and non-parametric statistical testing to identify local admixture differences
between cases and controls that accounts for global differences. In the current study, the
combined analysis of SNP and HLA genotypes in African Americans revealed for the first
time, strong evidence that the European HLA-DRB1*15:01 allele confers three times the MS
risk compared to the African HLA-DRB1*15:01 allele. This finding indicates increased risk
attributed to the European 15:01 allele could be due to functional differences within DRB1
itself, or possibly due to variant(s) present on the European HLA-DRB1*15:01 haplotype
that are not found on the African haplotype.

Some limitations must also be acknowledged. The diagnosis of MS cases in this large
dataset occurred over a twenty-five year period and in different clinical settings; both preva-
lent and incident cases were included. Although all cases fulfilled established diagnostic
criteria, is not known whether local genetic ancestral proportions (of particular importance
in the current study) would be expected to change for cases diagnosed at different time
points; larger investigations would be needed. We performed MDS analysis of genotype
data to broadly categorize samples as African Americans, Asian Americans, or Hispanics for
case-control analysis; careful matching on self-reported race/ethnicity was not possible for
all individuals. MDS components were therefore used in each analysis to control for potential
confounding; however, it is possible that population stratification could still contribute to
some of our findings. The Asian MS case sample utilized in the current study was small
compared to the other groups, reflecting the low prevalence of disease in this population,
which reduced power to detect to modest effects.

In conclusion, results from the current study reveal a complex picture of genetic ances-
try for MS-associated alleles in African Americans, Asian Americans, and Hispanics. Our
study shows that the higher prevalence of MS in populations of northern European ancestry
cannot simply be explained by the European ancestral origin of genetic risk factors. Rather,
any difference in prevalence due to genetics might be partially explained by a combination
of European risk alleles exerting greater risk (i.e. HLA-DRB1*15:01 ) compared to non-
European risk alleles, or the presence of protective alleles in individuals of non-European
ancestry. However, this does not rule out the possibility that observed prevalence differences
could result from the influence of environmental risk factors or socioeconomic status, includ-
ing differences in access to neurologists and diagnostic protocols using MRI, that may be
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population-specific.
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Chapter 3

Hypomethylation of immune genes
mediates methylation quantitative
trait loci at the major
histocompatibility complex in
Sjögren’s syndrome

3.1 Introduction

Sjögren’s syndrome (SS) is an autoimmune disease characterized by the lymphocytic infiltra-
tion of salivary and lacrimal glands, resulting in dryness of the mouth and eyes, fatigue, and
joint pain. The prevalence of SS is estimated to be 3% in individuals aged 50 years or older
and 0.6% overall, with a 9:1 female-to-male predominance [93]. When SS occurs in isolation,
it is referred to as primary SS; secondary SS co-occurs with other systemic autoimmune
diseases [94]. Environmental factors including infectious agents, stress, air pollution, and
silicone are implicated in disease pathogenesis [95–98]. Genetic association studies have es-
tablished genetic loci both within and outside the major histocompatibility complex (MHC)
[99–101].

Differential methylation has been a consistent theme reported by multiple studies of
CD4+ T cells, CD19+ B cells, whole blood, and labial salivary glands (LSGs) in SS [102–
111]. Specifically, a general hypomethylation of immune-related genes have been discovered,
along with implications for altered gene expression. Some of these studies have found ev-
idence suggesting genetic control of DNA methylation. Imgenberg-Kreuz et al. identified
methylation quantitative trait loci (meQTL), or loci where genetic variation is associated
with DNA methylation, in whole blood. However, this analysis was performed in controls
only instead of both cases and controls [111]. Another study reported an overlap of differen-
tially methylated probes with established genetic risk loci [112]. Since the relationships were
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associative and observed in datasets from different patients, evidence for genetic control is
suggestive at best.

We formally investigated evidence for genetic control in SS in the largest study of LSGs
from 64 primary SS cases and 67 symptomatic non-cases from the Sjögren’s International
Collaborative Clinical Alliance (SICCA) registry. Since non-cases are symptomatic for SS
phenotypes, DNA methylation differences are more likely to reflect disease pathology than if
we compared against healthy controls. Our overall approach first uses bumphunter to identify
differentially-methylated regions (DMRs), or genetic regions differentially methylated in the
same direction. Then, we identify meQTLs as SNPs ±250 kb away from a DMR where
genetic variation is associated with DNA methylation levels. Finally, we perform the causal
inference test developed by Millstein et al. to find DMR-meQTL pairs where the DMR
mediates the risk of the surrounding meQTL on SS [113]. With this study, we report (1)
CpG sites within the genome that showed evidence of mediating nearby genetic associations
with SS, which by extension also revealed (2) CpG sites whose methylation levels were
independent of neighboring genetic variation. Methods for site-specific epigenome editing
are currently under development [114], and by providing an understanding of the genetic
factors that influence differential methylation in SS, our study is essential for the potential
application of such therapeutic approaches to SS.

3.2 Materials and Methods

Study subjects and clinical evaluation

A total of 131 female, non-Hispanic white individuals were selected from the SICCA registry
for this study. All individuals from the SICCA registry exhibited at least one symptom
related to SS, specifically symptoms of dry eyes or dry mouth, prior suspicion/diagnosis of
SS, positive serum anti-SSA, anti-SSB, rheumatoid factor or antinuclear antibody results,
increase in dental caries, bilateral parotid gland enlargement, or a possible diagnosis of
secondary SS [115]. Case status was determined according to the 2016 American College of
Rheumatology/European League Against Rheumatism (ACR/EULAR) criteria for SS [116].
“Non-case” from the SICCA registry with at least one, but not all, SS symptoms or signs
were also included. More specifically, “non-cases” did not meet ACR/EULAR for SS but
were enrolled in SICCA due to the presence of 1 or more symptoms or signs suggesting
possible SS. Based on these criteria, we studied 64 SS cases and 67 non-cases.

Methylotyping and preprocessing

DNA was extracted from the LSG tissue collected from each study subject as previously
described [104]. DNA methylation was measured for each subject using the Illumina 450K
Infinium Methylation BeadChip (450K) platform for 28 subjects and the Infinium Methy-
lationEPIC (EPIC) platform for 103 subjects. The 450K and EPIC chips allow for high-



CHAPTER 3. HYPOMETHYLATION OF IMMUNE GENES MEDIATES MEQTL IN

SJÖGREN’S SYNDROME 55

throughput interrogation of more than 450,000 and 850,000 highly informative CpGs sites
respectively, spanning 22,000 genes across the genome.

Methylation data processing was performed using Minfi, a Bioconductor package for the
analysis of Infinium DNA methylation microarrays [117]. Background subtraction with dye-
bias normalization was performed on methylated and unmethylated signals with the noob
procedure, followed by quantile normalization with preprocessQuantile [118, 119].

For joint analysis of all 131 samples, the intersection of CpGs from 450K and EPIC chips
was selected for analysis, resulting in a starting number of 452,832 CpGs. Probes where more
than 5% of samples had a detection p-value > 0.01 were removed, to retain probes where
signal is distinguishable from negative control probes. To remove probes with ambiguous
methylation measurements due to incomplete binding between the DNA strand of interest
and probe strand DNA, probes with SNPs with minor allele frequency greater than 0% at
either the probe site, CpG interrogation site, or single nucleotide extension were removed.
Finally, probes identified with probe-binding specificity and polymorphic targets problems,
or cross-reactive probes, were removed [33, 34]. The final preprocessed dataset consisted of
336,040 CpG sites. Since no subject had more than 5% of probes with detection p-value
> 0.01, all 131 subjects were retained. Both M-values and β-values were used in subsequent
analyses (see Appendix B.1).

Removing unwanted DNA methylation variation

We identified array type (450K or EPIC), genetic ancestry, self-reported age of SS syndrome
onset, collection phase, smoker status, anticholinergic drug use, and co-morbidities as po-
tential confounders. Of these, array type and genetic ancestry were found to be strongly
associated with DNA methylation and case status respectively, and analytical models were
adjusted accordingly (Figures B.1 and B.2). However, case status was not associated with
array type, because the distribution of cases and non-cases were similar between 450K and
EPIC with 46.4% cases and 50.0% non-cases respectively. Wilcoxon’s rank sum test of differ-
ence in ancestry MDS component values between cases and non-cases revealed a significant
association at p-value ≤ 0.05 for components 2 - 4 and at p-value ≤ 0.10 for component
1. Unwanted methylation variation due to array type and genetic ancestry was removed
from β-values and M-values using ComBat from the SVA package, which applies an empirical
Bayes, model-based location/scale batch adjustment [120, 121]. See Appendix B.1 for details
of Combat usage.

Genotyping and quality control

The subject genotypes were taken from the genotypes of the larger SICCA cohort, which was
genotyped on the Illumina HumanOmni2.5-4v1 or Illumina HumanOmni25M-8v1-1 arrays
from DNA extracted from whole blood. All quality control steps performed have been
previously described [99]. The final genotype dataset consisted of 1, 392, 448 SNPs.
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Dimensionality reduction

Principal component analysis (PCA) was performed on the centered and scaled β-value
matrix X ∈ Rn×p, where n and p are the number of subjects and CpG sites, respectively.
We determined the relative influence of each CpG site on a principal component by analyzing
principal component loadings (see Appendix B.1).

Multidimensional scaling (MDS) was performed to detect population structure using
lower dimensions that explain observed genetic distance. With genotype data as reference
allele counts, pairwise genotype dissimilarity is summarized by the distance matrix D =
J−IBS ∈ Rn×n, where IBS ∈ Rn×n is the identity-by-state similarity matrix and J ∈ Rn×n

is the all-ones matrix. MDS of genotypes from the 131 subjects and reference European
subpopulations from the Human Genome Diversity Project (HGDP) [76] was performed
using PLINK 1.9 to assess association between genetic ancestry and case-control status
[122].

Identification of differentially methylated regions

Differentially methylated regions (DMRs) were identified using bumphunter, which searches
for bumps, or contiguous CpG sites consistently hypermethylated or hypomethylated in one
group of subjects compared to the other [123]. The linear regression specified for bumphunter
was

M ∼ outcome+ array type+ C1 + · · ·+ C5, (3.1)

which controlled for array type and genetic ancestry. Here, “M” is the M-value without
batch correction with Combat, outcome is SS case status, array type indicates array (450K or
EPIC), and C1−C5 indicate the first five MDS components of genotype data. The number of
bootstrap resampling B was set to 1,000 for generating null distribution of candidate DMRs
for establishing significance. Significant SS DMRs were stringently selected as those with
fwerArea ≤ 0.05, defined as proportion of bootstraps with maximum bump area greater
than observed DMR area, and consists of at least two CpG sites. See Appendix B.1 for
details on choice of bumphunter hyperparameters and annotation of DMRs.

Gene set enrichment analysis

Since methylation at transcription start sites and gene bodies has been shown to regulate gene
expression [124], we restricted gene set enrichment analysis (GSEA) to genes differentially
methylated at the promoter or gene body. DMR genes were tested for enrichment of gene
ontology (GO) gene sets from the Molecular Signatures Database [125] combined with SS-
related gene sets from past studies using the hypergeometric test (see Appendix B.1 for gene
set details). False discovery rate was controlled with the Benjamini-Hochberg procedure
[126]. Since genes in the same pathway tend to be up or down-regulated together, GSEA
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was performed separately for hypermethylated and hypomethylated DMR genes in cases
compared to non-cases [127].

Identification of DNA methylation quantitative trait loci

MeQTLs are loci whose genotypes are associated with DNA methylation. In this study,
candidate meQTLs for a DMR are defined as independent SNPs in the genomic region ±250
kb away from the start and end positions of the DMR respectively. Independent SNPs
were randomly pruned using PLINK to satisfy pairwise correlation r2 ≤ 0.5 in a 250, 000
bp window, with a window stride of 25, 000 bp [122]. The association between a candidate
meQTL and DMR was established by regressing the M-value, averaged across CpG sites of
the DMR, against genotype encoded as 0, 1, or 2 copies of the reference allele. The DNA
methylation values used for identifying meQTLs were batch-corrected for array type and
genetic ancestry. Significance of association was evaluated using t-test from linear regression.
Multiple hypothesis testing was addressed with the Benjamini–Hochberg procedure [126].

Mediation analysis with causal inference test

We used the CIT to determine whether the influence of meQTLs on SS was mediated by
DNA methylation levels[22,54]. We evaluate evidence for the causal mediation model where
genetic variation influences SS disease status through DNA methylation levels (Figure 3.1).

Figure 3.1: Causal mediation model. G = genotype; M = methylation; S = Sjögren’s
syndrome case status.

The CIT evaluates a set of statistical tests where rejection of the null supports a causal
mediation relationship. The statistical tests evaluate the following necessary and sufficient
conditions for the causal mediation model involving genotype “G”, methylation “M”, and
case status “S”,

1. S ∼ G

2. G ∼M |S

3. M ∼ S|G

4. S ⊥⊥ G|M ,
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where “∼” denotes associated with and “⊥⊥” denotes independent of. The maximum p-value
from these four statistical tests is the CIT p-value. See Millstein et al. and Appendix B.1
for additional details on the CIT [113]. The CIT genotype is encoded as 0, 1, or 2 copies of
the reference allele, DNA methylation value is the batch-adjusted M-value, and SS is binary
case status. False discovery rate was controlled at or under 5% using the permutation-based
q-value developed and implemented by Millstein et al. [128, 129]. See Appendix B.1 for
usage details of the CIT.

3.3 Results

Genome-wide DNA methylation profiles distinguish cases from
non-cases

The 131 individuals in this study comprise of 64 SS cases and 67 non-cases. PCA of β-values
adjusted for methylation array type and genetic ancestry revealed that principal component
1 (PC1) alone separated most cases from non-cases (Figure 3.2).

Figure 3.2: PCA of preprocessed, batch-corrected, β-values. SS case status, as determined
by the 2016 ACR/EULAR diagnostic criteria, is indicated by color. Cases and non-cases
show strong separation on PC1 values.

In contrast, PC2 did not provide as clear a separation. To understand this further, we
analyzed the PC1 loadings, which specify the contribution of each CpG site to PC1 (see
Appendix B.1). We observed that CpG sites in DMRs significantly contributed to PC1
on average, with an average absolute loading percentile of 94% (Figure 3.3C). In contrast,
the average contribution of the DMR CpG sites to PC2 was relatively low. Together, this
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indicated that case status explained a significant portion of variation in DNA methylation,
and that PC1 captured most of this variation explained by case status.

Hypomethylation of genes involved in immune response

Analysis with Bumphunter identified 215 significant DMRs from 2,747 candidate “bumps”.
Of the 215 DMRs, 169 were hypermethylated regions and 46 were hypomethylated regions,
in cases. Approximately 84% of DMRs were located in either promoters or gene bodies (Fig
2A), locations where differential methylation tends to influence transcription [124]. The top
three DMR-contributing chromosomes were chromosomes 1, 6, and 17, and a majority of
DMRs on chromosome 6 overlapped or surrounded the MHC (Figure 3.3B).

Figure 3.3: DMR characteristics. (A) Proportion of SS DMR locations relative to closest
gene, and CpG type proportions at each DMR location; most DMRs are located either in
the gene body (inside) or promoter, and most DMR CpG sites are either in the CpG island
or the open sea. (B) Density plot of SS DMR locations on chromosome 6, where a DMR’s
location is represented by GRCh37 genetic coordinates of its first CpG site to last CpG site.
The shaded red region denotes the MHC region. (C) Density plot of SS DMR CpG site
loading percentiles for PC1 and PC2.
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Genes near hypomethylated regions in cases were enriched for gene sets associated with
immune function (Table 3.1), with the top gene sets almost exclusively related to immune
response. This is expected given many DMRs were concentrated at the MHC. IRF5, which
resides on chromosome 7 and is the strongest genetic risk factor for SS outside the MHC, was
not the nearest gene for any DMRs. Of the 131 individuals in our study, 26 were in a previous
LSG study by Cole et al., which identified 57 genes whose promoters were hypomethylated in
SS [104]. Eight of those 57 genes were among the hypomethylated DMR genes identified in
this study. One DMR gene, PSMB9, was one of the 45 genes that previously demonstrated
differential expression between SS cases and non-cases [130].
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gene set n overlap genes p-value
adj.

p-value

SS DMP genes 8

TAP1, LTA, PSMB8,
AIM2, NCKAP1L,
LINC00426, LCP2,

ARHGAP25

3.80E−18 1.71E−14

Antigen processing and
presentation of
endogenous peptide
antigen

4
HLA-E, HLA-B, TAP1,

ABCB1
1.60E−12 3.59E−9

Antigen processing and
presentation of peptide
antigen via MHC class I

6
PSMB9, HLA-E, PSMB8,
HLA-B, TAP1, ABCB1

4.74E−12 5.53E−9

Antigen processing and
presentation of
endogenous antigen

4
HLA-E, HLA-B, TAP1,

ABCB1
4.92E−12 5.53E−9

Negative regulation of
innate immune response

4
HLA-E, HLA-B, TAP1,

NLRC5
3.93E−10 3.24E−7

Negative regulation of
natural killer cell
mediated immunity

3 HLA-E, HLA-B, TAP1 4.32E−10 3.24E−7

Antigen processing and
presentation via MHC
class IB

3 HLA-E, TAP1, ABCB1 1.19E−10 7.64E−7

Positive regulation of
antigen processing and
presentation

3 ABCB1, CCR7, TAP1 1.58E−9 7.92E−7

Positive regulation of
humoral immune
response

3 LTA, TNF, CCR7 1.58E−9 7.92E−7

Negative regulation of
cell killing

3 HLA-B, HLA-E, TAP1 2.66E−9 1.20E−6

Table 3.1: Top gene sets enriched for hypomethylated genes in SS. Candidate gene sets
include GO gene sets from the Molecular Signatures Database [125], a set of genes previously
reported to harbor differentially methylated CpG sites between SS cases and non-cases (SS
DMP genes) [104], and a set of genes previously reported to be differentially expressed
between SS cases and healthy controls (SS DE genes) [130]. n = number of overlapping
genes; adj. p-value = Benjamini-Hochberg adjusted p-value.

In contrast to hypomethylated regions, genes near hypermethylated regions were enriched
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for gene sets with miscellaneous functions, so the overall picture for hypermethylation in cases
is less clear. Table 3.2 shows that the top gene sets were associated with nervous system
development and cellular transport and signaling.

gene set n overlap genes p-value
adj.

p-value
Positive regulation of
transporter activity

6
WNK4, ATP1B2, RELN,
HAP1, CACNB2, TRPC6

1.36E−8 6.12E−5

Diencephalon
development

5
ETS1, GSX1, GLI2, HAP1,

SLC6A4
4.17E−7 9.38E−4

Hypothalamus
development

3 ETS1, GSX1, HAP1 1.73E−6 2.59E−3

Vasoconstriction 3 EDN3, HTR1A, SLC6A4 3.29E−6 3.42E−3
Modulation of excitatory
postsynaptic potential

3 ZMYND8, CELF4, RELN 4.38E−6 3.42E−3

Somatic stem cell
population maintenance

4
WNT98, LRP5, PBX1,

BCL9
4.59E−6 3.42E−3

Nerve development 4
HOXB3, COL25A1,
TFAP2A, SLITRK6

5.32E−6 3.42E−3

Peptide Transport 4
EDN3, SLC15A2, FAM3B,

TAPBP
7.06E−6 3.97E−3

Anatomical structure
regression

2 LRP5, GLI2 1.03E−5 4.86E−3

ERBB2 signaling
pathway

3 ERBB2, GRB7, SHC1 1.28E−5 4.86E−3

Table 3.2: Top gene sets enriched for hypermethylated genes in SS. Candidate gene sets
include GO gene sets from the Molecular Signatures Database [125], a set of genes previously
reported to harbor differentially methylated CpG sites between SS cases and non-cases (SS
DMP genes) [104], and a set of genes previously reported to be differentially expressed
between SS cases and healthy controls (SS DE genes) [130]. n = number of overlapping
genes; adj. p-value = Benjamini-Hochberg adjusted p-value.

DNA methylation mediates the effect of MeQTL on SS at the
MHC

We tested for association between average DMR methylation M -values and independent
SNPs in surrounding ±250 kb neighborhoods for each, which yielded 20,754 unique DMR-
SNP pairs. A total of 26 meQTL-DMR associations were identified with Benjamini-Hochberg
adjusted p-value ≤ 0.05, with one each from chromosomes 3, 11, 12, 16, and two from
chromosome 4; the rest were located within the MHC region on chromosome 6. Note that a
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meQTL can be associated with multiple DMRs, and a DMR can be associated with multiple
meQTL. The average meQTL-DMR distance was 153 kb, although this statistic was also
partially dependent on the SNP pruning process (Figure 3.4C).
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Figure 3.4: MeQTLs associated with SS DMR methylation M -values. (A) Sixteen of the 19
meQTL-DMR pairs supporting the causal mediation model lie in the MHC region. The top
panel displays all DMRs and meQTLs on chromosome 6, and the bottom panel zooms in on
a region with the meQTL-DMR pairs. Each DMR is specified by its chromosome, starting
position, and ending position, in GRCh37 genetic coordinates. (B) SNP rs9275224 is a
meQTL associated with average M -value of a DMR at 32,810,706 - 32,810,742 (GRCh37) on
chromosome 6. (C) Density plot of associated and unassociated SNP-DMR pairs by absolute
distance. While distance is approximately uniformly distributed for unassociated SNP-DMR
pairs, the distance of associated SNP-DMR pairs is concentrated around 153 kb.
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Of these 26 meQTL-DMR pairs, the CIT identified 19 with significant evidence supporting
the causal mediation model (q-value ≤ 0.05), with one pair each from chromosomes 3, 12,
and 16, and the rest from chromosome 6 (Table 3.3). At the MHC, the region spanning the
HLA-DQA1, HLA-DQB1, and HLA-DQA2 loci contained a high density of DMR-meQTL
pairs, with five DMRs and four meQTLs (Figure 3.4A). In total, these meQTL-DMR pairs
represent 12 unique DMRs and 9 unique SNPs.

SNP rs
ID

SNP
position

A1 A2 SS DMR distance p.cit q.cit

rs9275224 32659878 G A
chr6:32810706-

32810742
150828 1.00E−3 2.11E−3

rs9275224 32659878 G A
chr6:32819921-

32820102
160043 1.00E−3 2.11E−3

rs9275224 32659878 G A
chr6:32822911-

32823116
163033 1.00E−3 2.11E−3

rs9275224 32659878 G A
chr6:32813084-

32813337
153206 1.00E−3 2.11E−3

rs9275224 32659878 G A
chr6:32813448-

32813531
153570 1.00E−3 2.11E−3

rs2261033 31603591 G A
chr6:31544694-

31544931
58660 1.17E−3 2.11E−3

rs2261033 31603591 G A
chr6:31527920-

31528239
75352 1.89E−3 2.11E−3

rs2734985 29818662 G A
chr6:30042980-

30042985
224318 1.99E−3 2.11E−3

rs9275374 32668526 A G
chr6:32810706-

32810742
142180 3.99E−3 3.47E−3

rs2261033 31603591 G A
chr6:31539973-

31539998
63593 5.25E−3 4.17E−3

rs13335209 87860446 A C
chr16:87636539-

87636594
223852 5.78E−3 4.30E−3

rs3021302 32623150 G A
chr6:32810706-

32810742
187556 7.84E−3 4.89E−3

rs3021302 32623150 G A
chr6:32819921-

32820102
196771 1.47E−2 9.29E−3

rs2858332 32681161 C A
chr6:32819921-

32820102
138760 1.63E−2 1.05E−2

rs17407659 24238010 A G
chr12:24104007-

24104115
133895 1.74E−2 1.35E−2

rs3021302 32623150 G A
chr6:32813084-

32813337
189934 2.49E−2 1.64E−2



CHAPTER 3. HYPOMETHYLATION OF IMMUNE GENES MEDIATES MEQTL IN
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rs3021302 32623150 G A
chr6:32822911-

32823116
199761 2.69E−2 1.74E−2

rs2858332 32681161 C A
chr6:32810706-

32810742
129545 3.36E−2 2.14E−2

rs76027985 112439220 G A
chr3:112359488-

112359557
79663 3.65E−2 2.44E−2

Table 3.3: Top causal inference test results for meQTLs of SS DMRs. All genetic positions
are based on GRCh37 coordinates, and DMRs are denoted by the chromosome, start position,
and end position. Distance refers to base pair distance between DMR and meQTL. A1 =
allele 1; A2 = allele 2; SS DMR = differentially-methylated regions for Sjögren’s syndrome;
p.cit = causal inference test p-value; q.cit = permutation-based q-values from the causal
inference test.

We provide further evidence that the meQTLs at the MHC, which we discovered in our
131 study subjects, are risk alleles for SS. Five of the six meQTLs at the MHC exhibited
genome-wide significant associations with SS in a previous European GWAS (Figure B.6)[99].
Furthermore, there is evidence that three of these six meQTLs exhibited independent associ-
ations with SS based on results from logistic regression considering all six meQTLs included
as predictors (Table B.1). These results add functional relevance to previously established
SS-associated SNPs at the MHC.

3.4 Discussion

We investigated the casual mediation relationships between genetic variation, DNA methy-
lation, and SS in the largest LSG study of SS to date. Despite comparing SS cases against
symptomatic non-cases instead of healthy controls, our results show that significant differ-
ential methylation exists and is primarily driven by case status. The results of our DMR
analysis are consistent with the general theme of hypomethylation previously seen in LSG
[104]. Using the CIT applied to genotype and DNA methylation data from the same pa-
tients, we conclude that exists genetic control of differential methylation, especially at the
MHC.

General hypomethylation of genomic regions involved in the immune response in LSG
remains one of the most significant findings, with many DMRs located in the MHC region.
Many of these hypomethylated genes have biological roles closely related to SS pathophys-
iology. For example, dendritic cells in the glands produce high levels of interferons [93],
and PSMB8 and PSMB9, whose expressions are induced by gamma interferon, were both
hypomethylated in SS cases compared to non-cases. Genes PSMB8 and PSMB9 encode
catalytic subunits of the immunoproteasome that is involved in peptide presentation on the
surface of antigen-presenting cells [131]. Hypomethylation of PSMB9 may have a causal role
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in increasing expression levels in SS [130]. Previous studies have suggested that differential
DNA methylation in SS could be controlled by B cells infiltrating the LSG, which in turn
may affect the expression of inflammatory genes [106, 107]. However, since the LSG consists
of a mixture of epithelial and inflammatory cells, it remains to be concluded which exact cell
types contribute to the observed differential methylation.

Although the overall picture for hypermethylated regions in cases is less clear than that
for hypomethylated regions, GSEA suggested some degree of neurological involvement in
SS (Table 3.2). Peripheral neuropathy is the most common neurological complication of
SS, but involvement of the central nervous system has also been observed, including cogni-
tive disorder meningitis and optic neuritis [132]. The pathological mechanism by which SS
leads to damage of the nervous system is not well-established, but it is thought to involve
inflammatory infiltration of the dorsal root ganglia [93, 132].

Evidence of allele-specific methylation over extended genomic regions has been previously
reported by tissue, developmental stage, and ancestry [133]. In this study, we identified
DMRs whose methylation levels are under genetic control using the CIT. Twelve of the
215 DMRs demonstrated evidence of causal dependence on neighboring genotypes, with the
majority residing in the MHC. Furthermore, 9 of the 16 DMRs in the MHC region showed
evidence of mediation, suggesting a general theme of genetic control of DNA methylation at
the MHC. However, the mechanism by which genetic variation influences methylation in the
MHC remains unclear. Since HLA alleles are highly polymorphic, larger studies are needed
to investigate whether established SS HLA risk alleles exhibit a mediation relationship with
nearby DMRs. Table 3.3 shows multiple DMRs under genetic control of the same SNP (e.g.
rs9275224) at the MHC, potentially reflecting genetic control by linkage disequilibrium (LD)
blocks on multiple DMRs. Although we cannot definitely conclude this, Figure B.7 shows
that regions of high DMR density partially overlap with genetic LD blocks.

Evidence that DNA methylation can mediate genetic risk, and specifically genetic risk
conferred by the MHC, has been found in a number of other autoimmune diseases. Differ-
ential methylation encompassing exon 2 of HLA-DRB1*15:01 has been shown in monocytes
to the mediate effect of the HLA-DRB1*15:01 allele on its expression and risk of multi-
ple sclerosis [134]. In psoriasis, the majority of reported MeQTLs also reside in the MHC,
although target CpG loci were located more than 500 kb away from their corresponding
MeQTLs. Using the CIT, 11 SNP-CpG pairs were found to exhibit a methylation-mediated
relationship with psoriasis in skin tissue [135]. In rheumatoid arthritis, DNA methylation
levels were found to mediate genetic risk within the MHC in whole blood [136].

DNA methylation is currently thought to be influenced by genetic factors, age, environ-
ment and lifestyle, and tissue-type [137–140]. By distinguishing differentially methylated
CpG sites under genetic control from those without, we provide information that could be
essential for the potential therapeutic application of site-specific epigenetic editing for SS
[114]. For example, it may be important to prioritize testing of CpG sites without genetic
control first before moving on to those under genetic control. To date, DNA methyltrans-
ferase inhibitors and histone deacetylase inhibitors are the two classes of epidrugs approved
by the FDA for clinical use in the United States, most commonly for cancer [141]. Side
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effects are a major concern for these drugs because their effects are not locus specific, moti-
vating a need for designing epidrugs with improved target specificity [142]. Partly due to a
lack of understanding of the causal relationships involving epigenetic modifications and SS,
methylation-modifying therapies have not been used clinically for SS [143].

In conclusion, this is the first study to conclude genetic control of differential DNA
methylation in SS by performing a formal CIT on genotype and DNA methylation datasets
obtained from 131 individuals from SICCA. We replicated the hypomethylation observed in
many immune-related genes in cases, particularly those at the MHC. This study also sug-
gested the potential involvement of neurological processes from the study of hypermethylated
regions in cases. By performing CIT on DMRs and their nearby meQTLs, we found most
DMRs at the MHC were mediators of nearby risk alleles for SS. We could not find similarly
strong evidence of mediation for DMRs at other non-MHC locations. Through a formal
study of the causal relationships between genetic variation, DNA methylation, and SS case
status, we hope to provide valuable insights for any future endeavors to develop cite-specific
methylation-modifying therapies for SS.
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Chapter 4

Epigenetic stratification identifies
clinically-relevant disease subgroups
in Sjögren’s syndrome with
differential genetic risk at the major
histocompatibility complex

4.1 Introduction

Primary Sjögren’s syndrome (SS) is a common systemic autoimmune disease with a female-
to-male ratio of 9:1. The hallmarks of SS are dryness of the mouth and eyes, fatigue, and
joint pain. However, classification of SS based on these hallmarks alone remains challenging
because these hallmarks are common in the general population [93]. SS is also a heterogenous
disease, and there does not exist a formal criteria for separating cases into disease subgroups
[116]. This heterogeneity poses a challenge for diagnosis, management and therapeutic de-
velopment [144], and effective treatment options for SS are limited.

To address disease heterogeneity, a study based on the UK Primary SS Registry stratified
patients by self-reported symptoms of depression, anxiety, pain, fatigue, and dryness [144].
Their study discovered four patient subgroups and demonstrated the importance of proper
stratification for detection of treatment effects in clinical trials. However, since the clustering
was based on disease symptoms, it is not certain whether these subgroups correspond to
distinct pathobiology.

Gene expression, DNA methylation, and genetic variation have all been shown to cap-
ture disease variation [99, 130, 143]. In this study, we perform a cluster analysis of DNA
methylation data from labial salivary glands (LSG) tissue collected from 64 primary SS cases
and 67 symptomatic non-cases from the Sjögren’s International Collaborative Clinical Al-
liance (SICCA) registry. LSG is a prominent target of autoimmune attack in SS and LSG
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biopies are used for disease diagnosis and classification [93]. To address clustering in high
dimensions, we apply a variational autoencoder (VAE) model to perform dimensionality re-
duction of DNA methylation data [145]. The VAE approach for dimensionality reduction is
attractive for its ability to learn statistically independent latent variables in a smooth latent
space [146], allowing more meaningful application of clustering distance measures. Follow-
ing dimensionality reduction, we apply agglomerative hierarchical clustering to the latent
variables to identify patient clusters.

We report the identification of patient clusters that partition cases into two subgroups,
and investigate differences in clinical phenotype, genetic risk, and regions of variable methyla-
tion. Our multi-dimensional clinical data include serological assays, histopathologic examina-
tion, oral and ocular tests, and self-reported symptoms. We also investigate the effectiveness
of each phenotypic criterion from the 2016 American College of Rheumatology/European
League Against Rheumatism (ACR/EULAR) classification criteria in distinguishing severe
from mild cases, providing a basis of potential revision.

4.2 Materials and Methods

Study subjects and clinical evaluation

Study subjects included 64 SS cases and 67 symptomatic non-cases, all of whom are fe-
male, non-Hispanic White individuals from SICCA, with well-characterized clinical pheno-
typic data. Phenotypic data include salivary, oral, ocular, serological test outcomes, and
self-reported symptoms (Table C.1). These self-reported symptoms cover the categories of
dryness, fatigue, pain, anxiety, and depression. All individuals from SICCA exhibit at least
one symptom or sign related to SS, specifically symptoms of dry eyes or dry mouth, prior
suspicion/diagnosis of SS, positive serum anti-SS-A, anti-SS-B, rheumatoid factor or antin-
uclear antibody result, increase in dental caries, bilateral parotid gland enlargement, or a
possible diagnosis of secondary SS [115]. However, only primary SS cases are included in
this study. Case-control status was determined according to the 2016 ACR/EULAR criteria
for SS [116].

Methylotyping and preprocessing

DNA was extracted from the labial salivary gland tissue of each study subject as previ-
ously described [104]. DNA methylation was measured for each subject using the Illumina
450K Infinium Methylation BeadChip (450K) platform for 28 subjects and Infinium Methy-
lationEPIC (EPIC) platform for 103 subjects. The 450K and EPIC chips allow for high-
throughput interrogation of more than 450,000 and 850,000 highly informative CpGs sites
respectively, spanning ∼22,000 genes across the genome.

Methylation data processing was performed using Minfi, a Bioconductor package for the
analysis of Infinium DNA methylation microarrays [117]. Background subtraction with dye-
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bias normalization was performed on methylated and unmethylated signals with the “noob”
procedure, followed by quantile normalization with preprocessQuantile [118, 119].

For joint analysis of all 131 samples, the intersection of CpGs from 450K and EPIC chips
were selected for analysis, resulting in an initial set of 452,832 CpGs. Probes where more than
5% of samples had a detection p-value > 0.01 were removed, to retain probes where signal is
distinguishable from negative control probes. To remove probes with ambiguous methylation
measurements due to incomplete binding between DNA strand and probe, probes with SNPs
with minor allele frequency greater than 0% at either the probe site, CpG interrogation site,
or single nucleotide extension were removed. Finally, cross-reactive probes, or probes with
probe-binding specificity and polymorphic targets problems, were removed [33, 34]. The
final preprocessed dataset consisted of 336,040 CpG sites. Since no subject had more than
5% of probes with detection p-value > 0.01, all 131 subjects were retained.

Both methylation measures of β-values and M -values were used for this study. A β-value
is the ratio of the methylated probe intensity to the sum of methylated and unmethylated
probe intensities, and reflects the proportion of methylation at a CpG site. The M -value
can be derived from a β-value as log2

β
1−β , and was used for identifying DMRs due to less

severe heteroscedasticity [27].

Genotyping and quality control

The subject genotypes were taken from the genotypes of the larger SICCA cohort, which was
genotyped on the Illumina HumanOmni2.5-4v1 or Illumina HumanOmni25M-8v1-1 arrays
from DNA extracted from whole blood. All quality control steps performed have been
previously described [99]. The final genotype dataset consisted of 1,392,448 SNPs.

Removing unwanted DNA methylation variation

Since subjects were methylotyped on both the 450K and EPIC chip, we adjusted for batch
effect due to array type (Figure C.1). We applied parametric empirical Bayes using ComBat

from the SVA package to adjust β-values for array type [120, 121]. Since ComBat requires no
missing values, missing methylation values were mean imputed per CpG site before adjust-
ment, then missingness restored afterwards.

VAE summary

We use a VAE to perform a non-linear projection of methylation data onto a low dimensional
latent space. The VAE achieves this by mapping input data to a distribution of latent
variables whose samples are used to reconstruct the input data [145]. The VAE is comprised
of an encoder that estimates the parameters of the latent variable distribution, and a decoder
that attempts to reconstruct the data from the latent features. The encoder and decoder
are typically parameterized by neural networks acting as effective function approximators.
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We provide a brief review of VAE, and refer Kingma and Welling for complete details
[145]. Given an input dataset X = {xi}ni=1 where xi ∈ Rp (in our case p is the number of
CpG sites), the VAE learns a distribution of latent variables z ∈ Rm where m < p. Let
qφ(z|x) denote the latent variable distribution specified by an encoder with parameters φ,
and let pθ(x|z) denote the output distribution from a decoder with parameters θ. Then, the
VAE method maximizes a lower bound of the log likelihood known as the evidence lower
bound (ELBO)

log pθ(x) ≥ Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z)), (4.1)

where DKL(qφ(z|x)||p(z)) is the Kullback-Leibler (KL) divergence between distributions
qφ(z|x) and p(z). The distribution p(z) is chosen to be the standard multivariate normal dis-
tribution N (0, I). The ELBO terms have straightforward interpretations—maximizing the
first term minimizes the reconstruction loss and minimizing the KL divergence constrains
the latent variable distribution to be close to p(z). Thus, qφ(z|x) is chosen to belong to the
multivariate normal distribution family with diagonal covariance, and the encoder estimates
the mean and variance terms that specify the distribution. Reconstruction is learned by
minimizing average binary cross entropy between pθ(x|z) and input β-values, where pθ(x|z)
is chosen to be sigmoid activation for each CpG site.

The choice of p(z) as a standard multivariate normal allows the VAE to learn latent
variables with desirable properties. These properties are (1) statistical independence of
latent variables and, depending on the decoder, (2) smoothness of the latent space [146].
In other words for (2), interpolation in the latent space corresponds to interpolation in the
feature space of the data. This has led to the application of VAEs to extract meaningful
latent factors from DNA methylation and RNA-seq data [147, 148]. For our application of
clustering in the latent space, the smoothness property is important because it makes the
distance measures more meaningful.

We use the VAE implementation Tybalt and its hyperparameters [148], with a few excep-
tions. In particular, we train with a batch size of 16 and a maximum of 50 epochs. We use
the means outputted by the encoder as latent features of methylation data. Refer to Way
and Greene [148] for implementation details.

Hierarchical clustering

All clustering was performed using agglomerative hierarchical clustering with Ward’s min-
imum variance method as the link function [149]. At each merge iteration in hierarchical
clustering, Ward’s method merges the pair of clusters that leads to the minimum increase in
total within-cluster variance after merging. Similar to other link functions such as complete
linkage, Ward’s method tends to produce more balanced dendrograms and is less sensitive
to outliers. Euclidean distance between latent features is used for hierarchical clustering
in the latent space of DNA methylation data. In contrast, the baseline hierarchical clus-
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tering method uses the average absolute difference in β-values to compare a given pair of
individuals.

Statistical Testing

The Wilcoxon Rank Sum test was used to test the difference in ordinal or continuous clinical
phenotypes between severe and mild cases, and the Kruskal-Wallis test was used to test the
difference between four patient clusters. The chi-square test of independence was used to test
association between categorical clinical variables (i.e. nominal and dichotomous) and patient
clusters or disease subgroup. Logistic regression was used for genetic risk allele association
analysis for disease subgroups.

Focus score was not measured for patients whose LSG biopsy diagnosis was within normal
limits, non-specific chronic inflammation, or sclerosing chronic sialadenitis, and their scores
were assumed to be zero for statistical analysis. No other phenotype analyzed has more than
two missing values, and missing values were omitted from statistical tests. Tear break-up
times of greater than or equal to 10 seconds were considered healthy, so these times were
truncated and set to 10 seconds.

Identification of differentially methylated regions

DMRs were identified using bumphunter, which identifies regions of CpG sites which are all
hypermethylated or hypomethylated in one group of subjects compared to the other [123].
In this study, a candidate DMR is required to have at least two CpG sites and have an effect
size of at least 1.0, where the effect size is the expected change in methylation from one
group to the other. The linear regression specified for bumphunter was

M ∼ outcome+ array type, (4.2)

controlling for array type. Here “M” is the M -value without batch correction, array type
is an indicator variable for whether a subject was methylotyped on 450K, and outcome is
whether the subject belongs to the “severe” or “mild” disease subgroup. The number of
permutations was set at B = 1, 000 for generating a null distribution of candidate DMRs
for establishing significance, with nullMethod = bootstrap to control for the adjustment
covariate. Significant DMRs were stringently selected as those with fwerArea ≤ 0.05,
defined as proportion of permutations with maximum bump area greater than the observed
area for a DMR. Minfi was used to annotate each DMR with its nearest gene in base pairs,
location relative to nearest gene, and location relative to nearest CpG island. Detailed
description of each DMR gene available from National Center for Biotechnology Information
were obtained with Biopython [150].
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Gene set enrichment analysis

We restricted GSEA to genes differentially methylated at the promoter or gene body, given
differential methylation at these regions has been shown to regulate gene expression [124]. To
provide a qualitative picture of the biological processes impacted by differential methylation,
DMR genes were tested for enrichment of gene ontology (GO) gene sets from the Molecular
Signatures Database with the hypergeometric test [125]. The GO gene set totals 5,917, with
4,436 derived from biological process ontology, 580 from cellular component ontology, and
901 from molecular function ontology. Additionally, we included two gene sets consisting of
genes shown to be differentially methylated or differentially expressed respectively, between
SS cases and controls in LSG [104, 130]. We eliminated large gene sets numbering more than
100 genes for improved specificity GSEA results, retaining approximately 76% of gene sets.
Since genes in the same pathway tend to be up or down-regulated together [127], GSEA was
performed separately for hypermethylated and hypomethylated DMR genes. False discovery
rate was controlled with the Benjamini-Hochberg procedure [126]. We report the top 10
enrichment results by statistical significance as sufficient to provide an overall biological
picture, and avoid interpreting the rest of the results, given GSEA with the hypergeometric
test makes unrealistic independence assumptions between genes [151].

4.3 Results

Identification of patient clusters

We identified patient clusters in two steps: (1) performing dimensionality reduction of methy-
lation data onto a latent space using a VAE model, and (2) applying hierarchical clustering
to latent variables to identify patient clusters. Following guidelines established by Way and
Greene [148], the entire dataset was split into a 9:1 train validation ratio. Figure C.2 shows
that both training and validation VAE loss converged after around 40 epochs.
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Figure 4.1: Clustering of patient DNA methylation profiles. (A) Dendrogram from hierar-
chical clustering of VAE-based latent variables, with cluster numbering in the bottom and
dendrogram cut height indicated by horizontal dotted line. (B) Dendrogram of baseline hier-
archical clustering of DNA methylation profiles (see Section 4.2), with same annotations as
(A). (C) Confusion matrix showing clustering agreement between results from (A) compared
to that of (B).

Hierarchical clustering identified four robust patient clusters with distinct DNA methy-
lation profiles (Figure 4.1A), with high agreement with clusters from a baseline hierarchical
clustering approach (Figure 4.1B-C). A significantly higher proportion of subjects in clusters
1 and 2 are cases compared to those in clusters 3 and 4 (Table 4.1; chi-square test of inde-
pendence p-value = 2.43E−11). However, clusters 3 and 4 also contained a non-negligible
proportion (i.e. 21.2% and 36.1% respectively) of cases. The dendrogram heights in Figure
4.1A suggest that clusters 1 and 2 are more distant to clusters 3 and 4, than between them-
selves (e.g. cluster 1 compared to cluster 2). Thus, the imperfect partitioning between cases
and non-cases in clusters 1 and 2 versus clusters 3 and 4 reflects some disagreement with the
2016 ACR/EULAR classification criteria for SS.

Cluster 1 Cluster 2 Cluster 3 Cluster 3
Case 23 17 11 13
Control 3 0 41 23

Table 4.1: Subject stratification into patient clusters. Clustering result of 131 study
subjects from VAE-based clustering analysis of DNA methylation profiles. The 2016
ACR/EULAR SS classification criteria was used to establish case/non-case status [116].

We identified smoking, age of SS onset, and anticholinergic drug use in our clinical data as
potentially having unwanted influence on clustering analysis [152–154]. Statistical analysis
for history of cigarette use (p-value = 0.72), cigarettes smoked per day (p-value = 0.17),
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self-reported age of SS onset (p-value = 0.29), and anticholinergic drug use (p-value = 0.18)
showed no significant differences by patient clusters.

Clinical phenotype analysis by cluster and disease subgroup

Analysis of clinical phenotypes revealed that subjects in clusters 1 and 2 have a higher symp-
tom burden on average compared to subjects in clusters 3 and 4 (Table 4.2). However, except
for mouth pain, there were no significant differences in self-reported symptoms pertaining to
dryness, fatigue, pain, anxiety, or depression between the clusters (Table C.2; Figure C.3).
Patient cluster 2, which is entirely comprised of SS cases, has on average the most severe
clinical phenotypes among the four clusters (Table 4.2). As a result, individuals in clusters
1 and 2 are at higher risk of lymphoma compared to those in clusters 3 and 4 [93]. Although
no subjects have physician-confirmed lymphoma, clusters 1 and 2 accounted for all cases of
germinal center-like formation, an indicator of lymphoma. However, there were no signifi-
cant differences in prevalence of other extraglandular disorders (i.e. thyroid, liver, kidney,
and other systemic disease) between the clusters [115].

Since clusters 1 and 2 have a higher overall symptom burden and a distinct DNA methy-
lation profile from that of clusters 3 and 4, we investigated whether cases in clusters 1 and
2 (n = 40) and cases in clusters 3 and 4 (n = 24) constitute clinically distinct disease sub-
groups. Table 4.3 and Figure 4.2 show a significantly higher proportion of cases from clusters
1 and 2 are positive for anti-SS-A, anti-SS-B, and rheumatoid factor, germinal center-like
formation test results. Cases from clusters 1 and 2 also tend to have more severe antinu-
clear antibody titer results, immunoglobulin G results, left eye ocular SICCA scores, and
focus scores, at a α = 0.05 significance level (Figure 4.2; Table 4.3). However, there was
no evidence to suggest the disease subgroups have different severities in self-reported symp-
toms (Table C.3), nor were there significant differences in the prevalence of extraglandular
disorders (Table 4.3). Together, this analysis suggests that SS cases in clusters 3 and 4 are
clinically more similar to symptomatic non-cases than to cases in subgroups 1 and 2. We
will refer to cases in clusters 1 and 2 as “severe cases” and the other cases as “mild cases”.
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Figure 4.2: Clinical phenotype comparison between severe cases and mild cases. Plots
for clinical phenotypes that are different at α = 0.05 significance level between severe cases
and mild cases. Severe cases are from clusters 1 and 2 and mild cases are from clusters
3 and 4. P-values from Wilcoxon rank sum test or chi-square test of independence shown
above each subplot. (A) Immunoglobulin G box plot. (B) Focus score box plot. (C) Ocular
SICCA socre (maximum of left and right eyes). (D) Detection of antinuclear antibody at
1:40 concentration level bar plot. (E) Anti-SS-A bar plot. (F) Anti-SS-B bar plot. (G)
Rheumatoid factor bar plot. (H) Germinal center (GC)-like formation bar plot.

Clinical phenotype analysis highlighted areas of disagreement between the clustering
analysis and the ACR/EULAR classification criteria. The ACR/EULAR criteria is based
on the total score from meeting a list of phenotype requirements, where each requirement
contributes a score [116]. For the four patient clusters, cluster 2 has the highest proportion of
individuals meeting each phenotype requirement (Table 4.2). In cluster 1, which has a slightly
lower proportion of cases, these proportions decrease the most for anti-SS-A and Schirmer’s
test, relative to proportions in cluster 2. Further decline in proportions was observed in
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clusters 3 and 4. For disease subgroups, anti-SS-A is the most discriminative phenotype
between severe and mild cases (p-value = 5.27E−4), and is the only one that is significant
at the level α = 0.05 (Table 4.3). Discriminatory power is followed by unstimulated whole
saliva flow rate, ocular staining score, Schirmer’s test, and focus score, in decreasing order.
The focus score-based requirement is completely unable to distinguish between the severe
and mild cases, since all cases have focus scores greater than 1. However, severe cases have
significantly higher focus scores compared to mild cases (Table 4.3).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value
ana 0.85 1.00 0.40 0.44 2.02E−6
igg 1370.31 2130.53 995.69 1222.33 1.48E−8
c3 117.65 118.71 122.06 128.42 1.89E−1
c4 24.42 22.00 26.92 27.89 2.81E−2

ssb 0.50 0.94 0.06 0.08
6.38E−14

rf 0.65 0.94 0.13 0.17
2.33E−11

tbul time 4.88 4.53 7.71 6.11 1.45E−4
tbur time 4.88 3.59 7.52 5.58 7.27E−6
uws 0.42 0.19 0.67 0.55 3.80E−4
focus 3.36 4.77 1.68 2.25 5.51E−6
max(ossl, ossr) 7.58 9.18 4.33 4.54 1.46E−7
rparenlg 0.08 0.18 0.04 0.00 5.42E−2
lparenlg 0.08 0.18 0.06 0.03 2.45E−1
drymouth 0.88 1.00 0.98 0.89 1.33E−1
liqmouth 0.85 0.94 0.65 0.69 5.75E−2
dryeye 0.92 0.94 0.88 0.92 8.80E−1
lymphoma 0.00 0.00 0.00 0.00 NA
GC like formation 0.19 0.29 0.00 0.00 2.93E−5
thyroid 0.27 0.12 0.18 0.11 3.83E−1
liver 0.04 0.00 0.06 0.00 3.79E−1
kidney 0.00 0.00 0.02 0.06 4.36E−1
othersys 0.00 0.00 0.02 0.00 6.68E−1

pSS 0.88 1.00 0.21 0.36
2.43E−11

Satisfies 2016 ACR/EULAR SS criteria [116]

LSG with focal lym-
phocytic sialadenitis
and focus score ≥ 1

0.88 1.00 0.23 0.42
1.73E−10
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anti-SS-A + 0.62 0.94 0.06 0.14
8.52E−14

Ocular staining score
≥ 5 on at least one
eye

0.88 0.94 0.52 0.47 1.08E−4

Schirmer ≤ 5
mm/5min on at
least one eye

0.12 0.41 0.12 0.11 1.74E−2

Unstimulated whole
saliva flow rate ≤ 0.1
ml/min

0.77 0.94 0.46 0.50 7.32E−4

Table 4.2: Clinical phenotype averages by patient cluster, determined from the VAE-
based clustering analysis. P-values were computed using Kruskal-Wallis test for ordinal
or continuous clinical phenotypes, and computed using chi-square test of independence for
categorical or binary phenotypes. Significant p-values at α = 0.05 are bolded. Refer to Table
C.1 for key of clinical phenotype abbreviations. Note the average is equivalent to proportion
for binary phenotypes.

Mild cases Severe cases p-value
ana 0.58 0.95 9.41E−4
igg 1353.04 1716.55 2.68E−3
c3 131.33 118.10 8.29E−2
c4 25.63 23.30 5.70E−2
ssb 0.25 0.73 5.90E−4
rf 0.29 0.80 1.63E−4
tbul time 6.04 4.60 9.94E−2
tbur time 5.29 4.28 1.97E−1
uws 0.43 0.29 4.36E−1
focus 2.44 3.96 6.27E−4
max(ossl, ossr) 7.04 8.38 3.40E−2
rparenlg 0.04 0.13 5.06E−1
lparenlg 0.04 0.13 5.06E−1
drymouth 0.96 0.93 1.00E0
liqmouth 0.71 0.90 1.04E−1
dryeye 0.96 0.93 1.00E0
lymphoma 0.00 0.00 NA
GC like formation 0.00 0.25 2.08E−2
thyroid 0.13 0.20 6.69E−1
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liver 0.04 0.03 1.00E0
kidney 0.08 0.00 2.66E−1
othersys 0.04 0.00 7.95E−1
Satisfies 2016 ACR/EULAR SS criteria [116]
LSG with focal lymphocytic
sialadenitis and focus score ≥ 1

1.00 1.00 NA

anti-SS-A + 0.33 0.80 5.27E−4
Ocular staining score ≥ 5 on at least
one eye

0.79 0.93 2.42E−1

Schirmer ≤ 5 mm/5min on at least
one eye

0.21 0.25 9.39E−1

Unstimulated whole saliva flow rate
≤ 0.1 ml/min

0.67 0.85 1.60E−1

Table 4.3: Clinical phenotype averages for severe cases and mild cases. Severe cases belong
to clusters 1 and 2 and mild cases belong to clusters 3 and 4 from the VAE-based clustering
analysis. P-values were computed using Wilcoxon rank sum test for ordinal or continuous
clinical phenotypes, and computed using chi-square test of independence for categorical or
binary phenotypes. Significant p-values at α = 0.05 are bolded. Refer to Table C.1 for key
of clinical phenotype abbreviations. Note the average is equivalent to proportion for binary
phenotypes.

Differential genetic risk between patient clusters and disease
subgroups

We investigated whether patient clusters and disease subgroups exhibit differential risk at
established genetic risk loci for SS [99, 100, 155], where each loci was associated with SS at
genome-wide significance level (p-value < 5.0E−8) [156]. Of the SNPs in our genotype data,
four (rs485497, rs9271573, rs3021302, rs9275572) demonstrated significant difference in risk
allele frequency between the patient clusters, with higher frequencies in the high symptom
burden clusters compared to those in low symptom burden clusters (Table 4.4). Additionally,
three of the four SNPs reside in the major histocompatibility complex (MHC), tag the HLA
genes HLA-DRB1 and HLA-DQA1, and have p-values < 0.01. Lastly, the ordering of risk
allele frequencies follow the rough ordering of phenotype severity. Cluster 2 has the highest
risk allele frequencies, followed by cluster 1, cluster 4, and cluster 3, in decreasing order.
Comparison of disease subgroups show continued association for SNPs rs9271573 (OR =
3.31, p-value = 3.27E−3) and rs3021302 (OR = 4.33, 5.21E−3), treating severe cases as
“cases” and mild cases as “controls” in logistic regression (Table 4.5). As expected, severe
cases have higher risk allele frequencies. These analyses provide a genetic basis for patient
clusters and disease subgroups.
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Gene Chr SNP Ref
Clus-
ter
1

Clus-
ter
2

Clus-
ter
3

Clus-
ter
4

p-value

STAT4 2 rs11889341 A 0.29 0.35 0.18 0.22 1.66E−1
STAT4 2 rs7574865 A 0.29 0.32 0.19 0.24 3.08E− 1
IL12A 3 rs485497 G 0.50 0.56 0.35 0.54 2.89E− 2
HLA-
DRB1,
HLA-
DQA1

6 rs9271573 A 0.69 0.71 0.35 0.47 3.16E− 5

HLA-
DQA1,
HLA-
DQB1

6 rs3021302 G 0.37 0.41 0.13 0.19 3.05E− 4

HLA-
DQB1,
HLA-
DQA2

6 rs9275572 A 0.65 0.65 0.33 0.44 1.64E− 4

IRF5-
TNPO3

7 rs3823536 A 0.54 0.59 0.49 0.39 1.80E− 1

IRF5-
TNPO3

7 rs3807306 A 0.54 0.65 0.51 0.42 1.56E− 1

IRF5-
TNPO3

7 rs59110799 A 0.14 0.29 0.18 0.10 7.30E− 2

OAS1 12 rs10774671 G 0.31 0.44 0.43 0.40 4.66E− 1

Table 4.4: Frequency of SS genetic risk alleles by patient cluster. Minor allele frequency of
established SS genetic risk alleles [99, 100, 155], by patient cluster from VAE-based clustering
analysis. Chr = chromosome; Ref = risk allele. P-values computed from chi-square test of
independence and p-values significant at α = 0.05 are bolded.
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Gene Chr SNP Ref
Mild
cases

Se-
vere
cases

OR (95% CI) p-value

STAT4 2 rs11889341 A 0.29 0.31 1.10 (0.52 – 2.33) 8.11E−1
STAT4 2 rs7574865 A 0.29 0.30 1.04 (0.48 – 2.26) 9.22E−1
IL12A 3 rs485497 G 0.44 0.53 1.58 (0.69 – 3.62) 2.82E−1
HLA-
DRB1,
HLA-
DQA1

6 rs9271573 A 0.42 0.71 3.31 (1.49 – 7.34) 3.27E−3

HLA-
DQA1,
HLA-
DQB1

6 rs3021302 G 0.19 0.40 4.33 (1.55 – 12.15) 5.21E−3

HLA-
DQB1,
HLA-
DQA2

6 rs9275572 A 0.48 0.66 2.04 (0.98 – 4.23) 5.57E−2

IRF5-
TNPO3

7 rs3823536 A 0.46 0.56 1.73 (0.75 – 4.00) 2.00E−1

IRF5-
TNPO3

7 rs3807306 A 0.50 0.59 1.49 (0.69 – 3.24) 3.11E−1

IRF5-
TNPO3

7 rs59110799 A 0.17 0.22 1.42 (0.54 – 3.69) 4.74E−1

OAS1 12 rs10774671 G 0.35 0.35 0.982 (0.47 – 2.07) 9.62E−1

Table 4.5: Association analysis of SS genetic risk loci with disease subgroups. Logistic
regression evaluation of association between established SS genetic risk loci [99, 100, 155]
and disease severity status of cases. The columns “Mild cases” and “Severe cases” contain
minor allele frequencies for the mild and severe cases respectively. Chr = chromosome; OR
(95% CI) = odd ratio (95% confidence interval); Ref = risk allele. P-values significant at
α = 0.05 are bolded.

Differentially methylated regions between disease subgroups

We identified DMRs that underlie methylation differences between severe SS cases and mild
cases (Figure 4.1). The overall result is a general hypomethylation at the MHC and a general
hypermethylation in other areas of the genome (Figure 4.3). Specifically, we identified a total
of 207 significant DMRs from 826 candidate DMRs, with 41 hypomethylated regions and
166 hypermethylated regions, in severe cases relative to mild cases.



CHAPTER 4. EPIGENETIC STRATIFICATION IDENTIFIES

CLINICALLY-RELEVANT DISEASE SUBGROUPS IN SJÖGREN’S SYNDROME 83

Figure 4.3: Chromosome heatmap of DMRs. Statistically significant DMRs (fwerArea ≤
0.05) between severe and mild cases on a chromosome heatmap, with red/green indicating
hypermethylation/hypomethylation in severe cases relative to mild cases.

Gene set enrichment analysis (GSEA) of hypomethylated genes revealed an overall en-
richment of immune biological processes (Table 4.6). The top result is the set of genes whose
promoters were shown by Cole et al. to be differentially methylated in 13 SS cases and 13
symptomatic non-cases from the same SICCA study. This further supports the notion that
mild SS cases have DNA methylation profiles more similar to that of symptomatic non-cases.
Other enriched biological processes such as response to type I interferon and T cell migra-
tion, are known to be involved in the pathobiology of SS [94]. For GSEA of hypermethylated
genes, many neurological processes appeared in the top 10 results (Table 4.7). Another top
enriched gene set is the regulation of cell fate commitment, which could potentially reflect
differences in proportion of immune cells that infiltrated the LSG in SS patients [143].
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gene set n overlap genes p-value
adj.

p-value

SS DMP genes 6
AIM2, CTSZ, PSMB8,

TAP1, LCP2, ARHGAP25
5.21E−13 2.35E−9

Response to Type I
interferon

5
HLA-E, XAF1, PSMB8,

ISG20, IRF5
2.04E−10 4.60E−7

Mast cell activation 3 PIK3CD, LCP2, RHOH 1.00E−8 1.50E−5
Cellular extravasation 3 PIK3CD, TNF, ITGB2 2.11E−8 2.38E−5
Positive regulation of
monooxygenase
activity

3 TNF, GDNF, NPR3 3.96E−8 3.03E−5

Tumor necrosis factor
receptor binding

3 TNFSF13B, TNF, TRAF3 4.56E−8 3.03E−5

Receptor metabolic
process

4
GRB2, TNF, ITGB2,

CD81
4.72E−8 3.03E−5

Antigen processing
and presentation of
peptide antigen via
MHC class I

4
HLA-E, PSMB9, PSMB8,

TAP1
7.98E−8 4.48E−5

Spleen development 3 PSMB9, PITX2, PKN1 1.36E−7 6.78E−5
Regulation of
immunoglobulin
production

3 HLA-E, TNF, PKN1 2.92E−7 1.10E−4

Table 4.6: Top gene sets enriched for hypomethylated genes. Candidate gene sets include
GO gene sets from the Molecular Signatures Database [125], a set of genes previously reported
to harbor differentially methylated CpG sites between SS cases and non-cases (SS DMP
genes) [104], and a set of genes previously reported to be differentially expressed between
SS cases and healthy controls (SS DE genes) [130]. n = number of overlapping genes; adj.
p-value = Benjamini-Hochberg adjusted p-value.
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gene set n overlap genes p-value
adj.

p-value

Autonomic nervous
system development

5
EDNRB, TFAP2A,

PHACTR4, HAND2,
NAV2

9.21E−9 4.14E−5

Odontogenesis of
dentin containing
tooth

5
SOSTDC1, HAND2,

HTRA1, GLI2, BMP7
3.21E−7 7.21E−4

Neural crest cell
migration

4
EDNRB, PHACTR4,

HAND2, SEMA3E
1.15E−6 1.45E−3

Response to auditory
stimulus

3
CNTNAP2, FOXP2,

TACR1
1.35E−6 1.45E−3

Embryonic camera
type eye
morphogenesis

3
TFAP2A, PHACTR4,

BMP7
1.61E−6 1.45E−3

Regulation of cell fate
commitment

3
DUSP6, SOSTDC1,

NKX6-2
2.25E−6 1.45E−3

Dynein binding 3 RAB11FIP3, SNCA, RILP 2.25E−6 1.45E−3
Peripheral nervous
system development

4
EDNRB, TFAP2A,
HAND2, ERBB2

5.24E−6 2.09E−3

Embryonic eye
morphogenesis

3
TFAP2A, PHACTR4,

BMP7
6.04E−6 2.09E−3

Ventral spinal cord
interneuron
specification

2 NKX6-2, GLI2 7.34E−6 2.09E−3

Table 4.7: Top gene sets enriched for hypermethylated genes. Candidate gene sets include
GO gene sets from the Molecular Signatures Database [125], a set of genes previously reported
to harbor differentially methylated CpG sites between SS cases and non-cases (SS DMP
genes) [104], and a set of genes previously reported to be differentially expressed between
SS cases and healthy controls (SS DE genes) [130]. n = number of overlapping genes; adj.
p-value = Benjamini-Hochberg adjusted p-value.

Principal component analysis (PCA) of methylation latent variables revealed that the first
principal component (PC1) separates the high symptom burden clusters 1 and 2 from low
symptom burden clusters 3 and 4 (Figure 4.4A), with clusters ordered roughly according to
phenotype severity on PC1. The observed ordering suggests that PC1 represents methylation
variation in DMRs common to all clusters. PC2 separates cluster 4 from the rest of the
clusters, and may represent differential methylation that is specific to cluster 4. Together,
this suggests that in the majority of highly variable CpG sites, all four patient clusters
have varying degrees of methylation that distinguish each other. Only some CpG sites are
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uniquely differentially methylated in one cluster compared to the rest, which may be the case
for cluster 4. We further support this interpretation by investigating CpG sites at the MHC
that are differentially methylated between severe and mild cases. A dot plot of the average
methylation levels indeed shows that each cluster has varying degrees of methylation, with
cluster 2 experiencing the most severe hypomethylation, followed by cluster 1, cluster 4,
and cluster 3, in decreasing order (Figure 4.4B). At the MHC, more severe hypomethylation
generally corresponds with more severe clinical phenotypes.

Figure 4.4: Analysis of differential methylation among patients. (A) PCA plot of VAE-
based latent variables for all 131 study subjects, with patient cluster indicated by color and
primary SS (pSS) status indicated by shape. (B) Dot plot of average β-value over DMR
CpG sites at the MHC region, by patient cluster, where each dot represents an individual’s
average β-value at the MHC.

4.4 Discussion

In this study, we performed a cluster analysis on SS cases and symptomatic non-cases based
on DNA methylation profiles of the LSG. The analysis yielded four robust patient clus-
ters that partitioned cases into two disease subgroups. Differential methylation further re-
vealed cluster-specific levels of methylation at the MHC. Together this demonstrates the
effectiveness of DNA methylation in capturing disease variation at a high resolution. Specif-
ically, DNA methylation was able to separate mild cases from severe cases while the 2016
ACR/EULAR classification criteria considers them as one group. These two disease sub-
groups differ significantly across many key clinical phenotypes and have a genetic contribu-
tion. It is possible that some mild cases are biologically closer to symptomatic non-cases.
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We investigated the effectiveness of each ACR/EULAR phenotype criterion in separating
mild from severe cases. Since every case had focus scores at or greater than 1, this threshold
was unable to separate mild cases from severe cases. In contrast, a significantly higher
proportion of severe cases have positive anti-SS-A test result compared to mild cases. The
effectiveness of the remaining criteria falls somewhere in between. A potential revision to the
classification criteria to isolate severe cases may involve increasing the criteria thresholds,
and using the original criteria to distinguish healthy controls from cases. Besides revision
to the current classification criteria, targeted DNA methylation assays aimed at well-defined
DMRs may provide additional resolution. Commercial DNA methylation assays have already
seen applications for a variety of cancers, such as cancers of the bladder, breast, liver, lung,
etc [157].

It is possible that the high and low symptom burden patient groups identified by Tarn
et al. corresponds to the severe and mild cases identified in this study respectively [144].
Although we did not observe disease subgroups with dryness or pain as dominant symptoms,
this is possibly due to smaller sample sizes. By including symptomatic non-cases in our study,
we were able to see that mild cases are in fact similar to symptomatic non-cases, instead of
belonging to a patient cluster of its own.

A higher presence of antibodies appeared to co-occur with hypomethylation of the MHC
and a higher frequency of genetic risk alleles at the MHC. MHC associations with autoanti-
body manifestations have also been demonstrated in European systemic lupus erythematosus
[158], which is known to co-occur with secondary SS [93]. This further suggests a functional
link between antibody concentration and the genetics and epigenetics of the MHC, although
a formal causal study may be required. Additionally, without temporal DNA methylation
measurements, it is difficult to determine whether varying DNA methylation levels is a cause
of or a consequence of different phenotypic severities. It remains to be determined whether
differential methylation is due to differences in cellular infiltration of the LSG, or differential
methylation between the same cell types. The biological role of hypermethylation in the
LSGs of severe compared to mild cases also remains unclear. GSEA of hypermethylated
genes in severe cases suggests the presence of neurological complications (Table 4.7), which
although well described in SS [132], does not have an established relationship with DNA
methylation. Lastly, since differential methylation has also been reported between SS cases
and controls in CD4+ T cells, CD19+ B cells, and whole blood [102, 103, 105, 110–112], the
question remains whether their DNA methylation can provide a similar diagnostic resolution
observed in LSG. However, biopsies of the LSG should be available from any diagnosis based
on the formal diagnostic criteria [93].

To conclude, we show that DNA methylation profiles from LSG tissue alone can distin-
guish two SS disease subgroups with distinct clinical phenotype patterns and a genetic basis
at the MHC. GSEA of hypomethylated genes implicated increased involvement of immune
processes in severe cases compared to mild cases. Since the 2016 ACR/EUCLAR classifica-
tion criteria does not distinguish between the two disease subgroups, this study provides a
basis for potential revision to provide better diagnostic, disease management, and treatment
subgroups and approaches.
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Chapter 5

Bipartite graph-based approach for
clustering of cell lines by gene
expression-drug response associations

5.1 Introduction

One of the goals of precision cancer medicine is to identify predictive genomic features for
drug response, which can be in a disease-specific or pan-cancer context [159]. Multiple phar-
macogenomic datasets have been generated to this end, such as the NCI-60 drug sensitivity
database [45], the Cancer Cell Line Encyclopedia (CCLE) [46], the Cancer Target Discovery
and Development small molecule screening dataset [160], and the Genomics of Drug Sensi-
tivity in Cancer dataset [47, 48]. A pharmacogenomic dataset typically comprises of drug
response measurements for a panel of drugs and genomic measurements such as genotype
data, copy number variation, and gene expression, for cell lines grouped by their tissue of
origin.

Machine learning has become a popular tool for discovering drug-response associated
(DRA) genomic features, or DRA biomarkers, and for predicting drug response in pharma-
cogenomic datasets [47, 161–166]. Aside from the classic approaches of elastic net and näıve
Bayes, modern methods that focus on finding DRA biomarkers include multi-task learning
of drug response [167] and the MERGE algorithm integrating multi-omic prior information
[168]. Methods addressing the high-dimensional challenge imposed by genomic datasets in-
clude using drug-specific informative genes or pathway activity scores to model drug response
[169, 170]. However, none of these approaches consider how the composition of the cell lines
influences DRA biomarker discovery. In the absence of such consideration, these analyses
are either performed only on cell lines known to originate from the same disease tissue, or on
all available cell lines together. However, the disease-specific approach potentially sacrifices
power by failing to include similar cell lines from other groups, and the pan-cancer approach
reduces the disease-specificity of the discovered DRA biomarkers. The only approach we
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are aware of to date, that explicitly considers the similarity between cell lines, models drug
response as a weighted combination of responses from cell lines with correlated gene expres-
sion patterns and responses from drugs with correlated chemical structure features [171].
However, the approach by Zhang et al. is designed to predict drug response and does not
explicitly identify DRA biomarkers, nor does it explicitly suggest which groups of cell lines
are similar in terms of gene-drug associations.

We start by constructing a weighted undirected bipartite graph describing the associa-
tions between genes and drugs for each group of cell lines. The disjoint set of nodes represent
the genes and drugs respectively, and gene-drug edge weights are assigned based on the di-
rection and magnitude of association. The weights are derived from sparse canonical correla-
tion analysis (SCCA), which solves for a linear combination of genes and drugs such that the
Pearson correlation between the combination of genes and drugs is maximized [172]. SCCA
shares the same advantage as the multi-task approach for drug response prediction in its
ability to model the associations between multiple genes with multiple drugs simultaneously.
We then introduce a nuclear norm-based dissimilarity measure to quantify the similarity
between these graphs. Using this dissimilarity measure, we implement an agglomerative
merging algorithm to successively combine cell line groups. Permutation-based p-values are
generated to indicate the significance of each merge, to help differentiate inconsequential
groupings from groupings of cell lines that share similar gene-drug association patterns.

We demonstrate our method on gene expression and drug sensitivity measurements from
the CCLE dataset. We choose to work with gene expression because it has been shown to
be the most predictive genomic data type for drug response compared to DNA methylation,
cancer type, mutation, and copy number alteration [173]. First, we show that our method
suggests significant merging between positive control groups expected to have similar gene-
drug association patterns. Next, we show that our method ranks acute myeloid leukemia
(AML) and chronic myeloid leukemia (CML) as the most similar groups compared to existing
approaches that apply agglomerative hierarchical clustering. By combining AML and CML,
SCCA was able to rank myeloid leukemia genes much higher compared to running SCCA on
AML or CML alone. Finally, we demonstrate that our method was able to effectively infer
the true hierarchy from simulation compared to existing agglomerative hierarchical clustering
approaches.

5.2 Overview of proposed approach

In pharmacogenomic datasets such as CCLE, cell lines are grouped by their tissue of origin.
Each group i with ni cell lines has a genomic features data matrix X [i] ∈ Rni×p and a drug
sensitivity data matrix Y [i] ∈ Rni×d, all of which we can assume to be standardized. With
G groups, the entire dataset is denoted X = {X [1], . . . , X [G]} and Y = {Y [1], . . . , Y [G]},
and the goal is to identify groups that share similar gene-drug association patterns. Our
approach begins by constructing a weighted bipartite graph to describe the associations
between genes and drugs for each group. The edge weights of each graph are entries of the
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outer product B = a ⊗ b between canonical vector a ∈ Rp for genes and canonical vector
b ∈ Rd for drugs, which are solved for by SCCA. The vectors a ∈ Rp and b ∈ Rd specify
sparse linear combinations of genomic features and drug responses to maximize Pearson
correlation Corr(Xa, Y b). The linear combinations Xa, Y b are sometimes referred to as
canonical variates. We refer to the matrix B ∈ Rp×d as the bipartite edge weight matrix
(Figure 5.1B). We then introduce a nuclear norm-based dissimilarity measure to compare a
given pair of bipartite edge weight matrices B[u] and B[v]. With this dissimilarity measure,
we can perform bottom-up merging of groups until all groups are merged. At each merge,
a new graph is constructed using the merged cell lines. A hypothetical merging process
involving datasets X, Y is depicted in Figure 5.1A.

Figure 5.1: Overview of proposed approach. (A) Visualization hierarchical clustering
applied to pharmacogenomic datasets X, Y . (B) For each cluster in the dendrogram, we
represent gene-drug associations as a bipartite graph between genes and drugs, with edge
weights between gene i and drug j as the product aibj of canonical vector entries. The
canonical vectors are solved by SCCA, and the resulting bipartite edge weight matrices are
compared using the nuclear norm-based dissimilarity measure.
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5.3 Materials and methods

Review of sparse canonical correlation analysis

Motivated by the use of Pearson correlation to evaluate DRA biomarkers [174], we use SCCA
to identify genomic features and drugs showing strong correlation. SCCA is a penalized
extension of canonical correlation analysis (CCA) developed by Hotelling [175]. Since CCA
is not scale invariant, assume each feature in X, Y is centered and scaled to variance one. In
high throughput genomics data, p and sometimes d are typically much larger than n, and the
subset of relevant biomarkers is often small. Hence, we impose sparsity on a, b by adopting
the following diagonal penalized CCA criterion developed by Witten, Tibshirani, and Hastie
[176], which treats sample covariance matrices SXX ∈ Rp×p and SY Y ∈ Rd×d as diagonal and
relaxes equality constraints for convexity

max
a∈Rp,b∈Rd

a>X>Y b

||a||2 ≤ 1, ||b||2 ≤ 1

p1(a) ≤ c1, p2(b) ≤ c2,

(5.1)

where p1 and p2 are convex penalty functions, and c1 and c2 are hyperparameters that control
the degree of regularization. In our application, the `1 penalty is chosen as p1(·) = p2(·) =
||·||1 to induce sparse regularization [177], and c1 and c2 are selected based on k-fold cross
validation. Thus, zero entries in a, b suggest that the corresponding genes and drugs are
not associated with each other. Conversely, when the magnitudes of entries ai, bj for gene
i and drug j respectively are large, then gene i and drug j are strong associated with each
other. Genes with top canonical vector entries in absolute value are considered candidate
DRA biomarkers. We adopt the modified NIPALS algorithm proposed by Lee et al. [172]
to solve the above optimization, which is reported to have superior empirical performance
than the algorithm proposed by Witten, Tibshirani, and Hastie [176].

Dissimilarity measure

We introduce a dissimilarity measure to compare bipartite edge weight matrices created from
SCCA canonical vectors. Specifically, given canonical vectors a ∈ Rp, b ∈ Rd solved by SCCA
for a group of cell lines, we form the bipartite edge weight matrix B ∈ Rp×d as the outer
product B = a ⊗ b of the canonical vectors. Each entry B[i, j] = aibj contains information
about the direction and magnitude of association between gene i and drug j, with negative
values (e.g. ai > 0 and bj < 0) indicating negative association. We introduce a nuclear norm
based dissimilarity measure between a pair of such edge weight matrices B[u], B[v] as

d(B[u], B[v]) =

∑
i σi(B

[u] −B[v])∑
i σi(B

[u]) +
∑

i σi(B
[v])

, (5.2)
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where d(·, ·) ∈ [0, 1] and σi(A) denotes the i-th singular value of matrix A. The dissimilarity
measure is designed based on the nuclear norm ||A||∗ =

∑r
i=1 σi(A), which is the convex

envelope of the rank function Rank(A). Specifically, this means ||A||∗ satisfies Rank(A) ≥
1
M
||A||∗ for all A ∈ {A | ||A|| ≤M} [178]. If B[u] and B[v] are similar, then any meaningful

matrix structure in B[u] and B[v] will become deficient in B[u]−B[v], and the matrix difference
may resemble a noise matrix. If we assume noise matrices tend to have small norm (e.g.
Frobenius norm), then ||B[u]−B[v]||∗ will tend to be small as well because ||A||∗ ≤

√
r||A||F

holds for any A ∈ Rm×n (see Appendix D.1 for proof). The denominator term in Equation
(5.2) ensures d(B[u], B[v]) is bounded between 0 and 1.

Agglomerative clustering of cell line groups

We implement an algorithm to perform bottom-up merging of the initial cell line groups,
which is presented in Algorithm 5.1. In Algorithm 5.1, a new bipartite graph is constructed
for each newly merged group and compared against existing bipartite graphs. The merging
process continues until all groups are merged, yielding a dendrogram. See Appendix D.1 for
how dendrogram height is calculated from merged dissimilarity measures.

Algorithm 5.1 Agglomerative hierarchical clustering

1: procedure Hierarchical Clustering((X [1], Y [1]), . . . , (X [G], Y [G]))
2: Run SCCA() on (X [i], Y [i]) ⇒ B[i] for i = 1, . . . , G
3: Construct D ∈ RG×G distance matrix
4: while not all groups merged do
5: Identify most similar groups (X [1′], Y [1′]) and (X [2′], Y [2′])

6: Merge groups X̃ =

[
X [1′]

X [2′]

]
, Ỹ =

[
Y [1′]

Y [2′]

]
7: Run SCCA() on (X̃, Ỹ ) ⇒ B̃
8: Update distance matrix

9: Convert merged distances to dendrogram merge heights
10: Output dendrogram

We also implement the option of subsampling cells to improve robustness of the resulting
dendrogram. In this subsampling scheme, we replace running SCCA once to produce matrix
B with running SCCA multiple times over repeatedly subsampled cell lines from a given
group to produce the final element-wise average B̃. This subsampling procedure is summa-
rized in Algorithm 5.2. This subsampling procedure is performed for every merged cluster,
including the starting clusters.
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Algorithm 5.2 Subsampling for robustness of hierarchical clustering.

1: procedure Subsampling((X, Y ), m, p)
2: Initialize B̃ = 0 ∈ Rp×q

3: for i = 1 to m do
4: Subsample p fraction of cells from (X, Y ) to get X̂, Ŷ
5: â, b̂ = SCCA(X̂, Ŷ )
6: B̂ = â⊗ b̂
7: B̃ := B̃ + B̂

8: B̃ := 1
m
B̃

9: Output B̃

We provide a statistical approach to quantify how similar the gene-drug associations are
for each merge. Specifically, we compute a p-value for each merge by generating a null
distribution of dissimilarities by permuting the ordering of cell lines between groups u and
v. Our null and alternative hypotheses are

H0 : there is no shared gene-drug relationship between u and v. (5.3)

H1 : there is shared gene-drug relationships between u and v. (5.4)

This is implemented by keeping the rows of Y [u] and Y [v] fixed, and permuting the rows of
X [u] and X [v] separately and independently of each other. Through permutation, any shared
gene-drug relationships between groups u and v are broken. This procedure is summarized
in Algorithm 5.3.

Algorithm 5.3 Permutation scheme for generating p-values.

1: procedure Permutation((X [u], Y [u]), (X [v], Y [v]), n)
2: Initialize empty D[·] of length n
3: for i = 1 to n do
4: Permute rows of X [u] ⇒ X̃ [u]

5: Permute rows of X [v] ⇒ X̃ [v]

6: ã[u], b̃[u] = SCCA(X̃ [u], Y [u])
7: ã[v], b̃[v] = SCCA(X̃ [v], Y [v])
8: B̃[u] = ã[u] ⊗ b̃[u]
9: B̃[v] = ã[v] ⊗ b̃[v]

10: D[i] = d(B̃[u], B̃[v])

11: Output D[·]

With the generated null distribution of dissimilarities, the p-value is defined as the proportion
of dissimilarity measures that is less than the observed dissimilarity. When H0 is true, the
p-value should be high, and when H1 is true, the p-value should be small.
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CCLE dataset

We apply our method to the mRNA expression and drug sensitivity datasets from CCLE
[161], which contains pharmacologic profiling of 24 compounds across ∼ 500 cell lines. Drug
sensitivity is measured in terms of area over dose-response curve, as described by Barretina
et al. [161]. Expression is measured in log2 TPM , where TPM stands for transcripts per
million, a normalized unit of transcript expression. Cell lines and drugs were removed due
to missing values to satisfy input requirement for SCCA(·). For computational efficiency,
we followed the example in Barretina et al. [161] by selecting the most variable genomic
features, reducing the number of genomic features from ∼ 50, 000 to ∼ 800. The final
dataset comprises of 391 cell lines grouped by 12 different primary sites, or tissue of origin,
with 791 genomic features and 16 compounds (see Appendix D.1). Since many primary
sites belong to different organ systems, we do not expect most merges to be biologically
significant. Thus, we create positive control groups that are expected to be similar by
randomly splitting the largest groups into two to test if they merge first. These groups
are the lung tissue and hematopoietic and lymphoid tissue respectively. We also perform a
separate analysis restricted to cell lines from the hematopoietic and lymphoid tissue, which
has multiple tumor subtypes, to see if there are cell line groupings that lead to better DRA
biomarker candidates.

Simulation

We compare the performance of our method against existing agglomerative merging ap-
proaches when a hierarchical relationship of gene-drug associations exists and is known, to
see how well the resulting dendrograms resemble the true hierarchy. Additionally, we study
how the merge p-values vary with the similarity between groups.

We simulate X ∈ Rn×p and Y ∈ Rn×d with n = 700, p = 1, 000 and d = 20, comprising of
seven groups of 100 cell lines each. We pre-select 200 genomic features as DRA biomarkers
for each group, and generate drug response accordingly as a function of the selected genomic
features. The simulation for a group of nu cell lines is as follows:

1. Generate genomic covariance matrix Σ[u] ∈ Rp×p where only DRA biomarkers are
highly correlated with each other. See Appendix D.1 for details on generating Σ[u].

2. Generate each cell line X(i) ∼ N (1,Σ[u]) for i = 1, . . . , nu.

3. Generate initial drug response as noise Yij ∼ N (0, 0.1) for each cell line i and drug j.

4. Generate final drug response of cell line i to drug j as Yij := Yij +(X(i))>β[u] where β
[u]
k

is drawn independently and uniformly from {−3,−2, 2, 3} if k-th feature is a biomarker

and β
[u]
k = 0 otherwise.
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Each cell line group u is simulated from its own Σ[u] and β[u] ∈ Rp. The set of gene-
dependent drug responses and the set of gene-independent drug responses is the same for each
group. We set half of the drugs to be gene-dependent and the other half as gene-independent.

To simulate the hierarchy by varying the proportion of DRA biomarker entries in β that
is shared between groups, where shared entries βk have the same values. For instance, we
can simulate two similar groups u and v by setting 90% of biomarker entries in β[u] and β[v]

be identical. The hierarchical structure we simulate is presented in Figure 5.2.

Figure 5.2: Simulated hierarchy with percentage at each non-leaf node indicating percent-
age biomarker overlap between any group from left child and any group from right child
(height not necessarily proportion to dissimilarity).

5.4 Results

Agglomerative clustering identifies sensible clusters in CCLE data

On the CCLE dataset, our method merged groups expected to have similar gene-drug as-
sociation patterns. We constructed positive control groups by randomly splitting cell lines
from lung (n = 88) and hematopoietic and lymphoid tissue (n = 68) each into two groups,
to see if these groups merge directly first with relatively low p-values. Figure 5.3 shows the
dendrograms without and with the subsampling in Algorithm 5.2. From Figure 5.3A, we see
cell lines from lung tissue and hematopoietic and lymphoid tissue were the first to merge
with each other respectively, with both merges having the lowest p-values. Additionally,
the p-value was lower for the lung control groups than that of the hematopoietic and lym-
phoid tissue control groups, which potentially reflects the greater heterogeneity present in
hematopoietic and lymphoid tissue. Cell lines from the stomach and large intestine, which
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are part of the digestive system, were also among the first groups to merge. However, the
merge had a larger p-value of 0.48, potentially reflecting a larger difference between primary
sites rather than within. To demonstrate stability of the merges, we ran the subsampling
procedure presented in Algorithm 5.2, and the dendrogram remained unchanged (Figure
5.3B). The remaining p-values were closer to one and this supports the notion that most
primary sites tend to be distant biologically.

Figure 5.3: Hierarchical clustering dendrograms of CCLE dataset (A) without subsampling
and (B) with subsampling (n = 100, p = 80%). Permutation-based merge p-values are
annotated to the right of each merge point, with 100 permutations.
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Cell line composition influences discovery of candidate DRA
biomarkers and drugs

We demonstrate that the appropriate grouping of tumor subtypes can lead to more disease-
relevant DRA biomarkers in hematopoietic and lymphoid tissue. After filtering out subtypes
with less than five cell lines, we ended with 60 cell lines, with five from chronic myeloid
leukemia (CML), five from Burkitt lymphoma, six from T cell acute lymphoblastic leukemia
(ALL), eight from diffuse large B cell lymphoma (DLBCL), nine from acute myeloid leukemia
(AML), 13 from lymphoma unclassified (other), and 14 from multiple myeloma. Due to small
sample sizes, we did not generate merge p-values.

We compared our clustering results against results from other hierarchical clustering-
based approaches. The first baseline approach directly applied standard hierarchical clus-
tering with Ward’s minimum variance merging criterion to the combined dataset of mRNA
expression and drug sensitivity C = [X, Y ] ∈ Rn×(p+d), with each feature centered and stan-
dardized. Hierarchical clustering was applied to group centroids for each starting group
rather than individual cell lines. The second clustering approach is based on joint latent
variables estimated from expression and drug sensitivity datasets by iCluster [179]. Latent
variables Z ∈ Rn×k were estimated by modeling gene expression and drug sensitivity with
Gaussian distributions and setting k = 6 (one less than the number of starting groups, as
recommended). Then, regular hierarchical clustering with Ward’s minimum variance crite-
rion was applied to the starting group centroids in the latent feature space. Both alternate
approaches learn hierarchy from the joint feature space of genes and drug response instead
of from the association patterns between genes and drugs.

Although the direct merge between AML and CML was observed in all approaches, this
merge was prioritized as first in our approach (Figure 5.4). The similarity between AML and
CML has a clear biological interpretation because myeloid leukemias originate from myeloid
cells whereas the remaining disease subtypes develop from lymphoctyes. Myeloid cells reside
in the bone marrow and develop into red blood cells, platelets, or white blood cells (except
lymphocytes), whereas infection-fighting lymphocytes refer to B cells, T cells, or plasma
cells.
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Figure 5.4: Comparison of agglomerative merging results of subtumors from hematopoietic
and lymphoid tissue. (A) Bipartite graph-based clustering. P-values not computed due
to small sample sizes. (B) Hierarchical clustering applied to starting group centroids of
combined gene expression and drug sensitivity datasets. (C) Hierarchical clustering applied
to starting group centroids of latent variables Z estimated from iCluster [179].
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We found that both the candidate DRA biomarkers and associated drugs found by SCCA
depend on cell line composition. To assess this, we ran SCCA separately on cell lines from
AML alone, CML alone, AML combined with CML (AML+CML), and from all subtumors
combined (hematopoietic and lymphoid tissue). In both AML and AML+CML, the com-
pound Sorafenib emerged as the top compound. However, Sorafenib was ranked fifth in the
hematopoietic and lymphoid group. The top five compounds in decreasing order for the
AML+CML group were Sorafenib, TAE684, Topotecan, Nutlin-3, and AZD6244. In con-
trast, the top five compounds for the hematopoietic and lymphoid tissue group were ranked
in decreasing order as PD-0325901, AZD6244, PF2341066, TAE684, and Sorafenib. Thus,
the ordering of the compounds depended on the cell line composition.

We evaluated whether SCCA ranked myeloid leukemia-related genes higher in AML+CML
compared to any other grouping of subtypes from hematopoietic and lymphoid tissue. Genes
are ranked by coefficient magnitude in the canonical vectors. For comparison, we investi-
gated how the top 10 genes for each group ranked in the other groups. Additionally, we
labeled genes as myeloid leukemia related, other immune-related, or neither. Genes were la-
beled based on descriptions provided by the National Center for Biotechnology Information
(NCBI) or published results from literature, and these are listed in Table 5.1.

Gene Label Description
FERMT3 myeloid

leukemia
FERMT3 (Kindlin-3) interacts with the ribosome and reg-
ulates c-Myc expression required for proliferation of CML
cells [180].

CD70 myeloid
leukemia

CD70 /CD27 signaling in AML cells activates stem cell gene
expression programs, including the Wnt pathway, and pro-
motes symmetric cell divisions and proliferation [181].

CD40 myeloid
leukemia

CD40 ligation reverses T cell tolerance in AML [182].

PPARG myeloid
leukemia

The PPARG receptor protein is expressed in primary
myeloid and lymphoid leukemias and in lymphoma and
myeloma cell lines. PPARG ligation alone and in combi-
nation with retinoids holds promise as novel therapy for
leukemias by activating the transcriptional activity of target
genes that control apoptosis and differentiation in leukemias
[183].

YAP1 myeloid
leukemia

In multiple myeloma (MM) and leukemias, YAP seems to
exert a tumor suppressive function by regulating the Abl1 -
dependent DNA damage response, which leads to apopto-
sis in cancer cells. This explains why deletion or downreg-
ulation of YAP/TAZ are frequently observed in MM and
leukemias [184].
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PEG10 immune Overexpression of this gene has been associated with several
malignancies, such as hepatocellular carcinoma and B-cell
lymphocytic leukemia.

LRMP immune The protein encoded by this gene is expressed in a devel-
opmentally regulated manner in lymphoid cell lines and tis-
sues. The protein is localized to the cytoplasmic face of the
endoplasmic reticulum.

CXCL8 immune The protein encoded by this gene is a member of the CXC
chemokine family and is a major mediator of the inflamma-
tory response. The encoded protein is secreted primarily by
neutrophils, where it serves as a chemotactic factor by guid-
ing the neutrophils to the site of infection. This chemokine
is also a potent angiogenic factor.

LYZ immune This gene encodes human lysozyme, which is one of the an-
timicrobial agents found in human milk, and is also present
in spleen, lung, kidney, white blood cells, plasma, saliva, and
tears.

SRGN immune This gene encodes a protein best known as a hematopoietic
cell granule proteoglycan. Proteoglycans stored in the se-
cretory granules of many hematopoietic cells also contain a
protease-resistant peptide core, which may be important for
neutralizing hydrolytic enzymes.

F3 immune This gene encodes coagulation factor III which is a cell sur-
face glycoprotein.

ETS1 immune Copy number analysis on marginal zone B cell lymphomas of
the gastrointestinal tract revealed amplification of the ETS1
gene along with some flanking genes in the more aggressive
large cell variants of these tumors. ETS1 expression levels
are a poor prognostic marker for diffuse large B cell lym-
phoma [185].

Table 5.1: Top DRA biomarkers with either myeloid leukemia or other immune-related
functions. Each gene is ranked top 10 in either CML and AML combined, CML, AML, or
all cell lines from hematopoietic and lymphoid tissue by SCCA. Unless cited, descriptions
are provided by NCBI.

Figure 5.5 shows how the ranking of these genes changed depending on the grouping
of cell lines. Although AML and CML are both myeloid leukemias, majority of myeloid
leukemia genes were not highly ranked when SCCA was run separately on AML and CML
cell lines respectively. By combining cell lines from AML and CML, most myeloid leukemia
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genes surfaced among the top 10 ranked genes, demonstrating improved power. We observed
that when we run SCCA on all 60 cell lines from hematopoietic and lymphoid tissue, the
disease-specificity of DRA biomarkers decreased. Instead, the DRA biomarkers tended to
have more general immune functions (Table 5.1).

Figure 5.5: Dotplot of SCCA rankings of myeloid leukemia, immune, and genes with other
functions by grouping of cell lines from hematopoietic and lymphoid tissue. The groups are
hematopoietic and lymphoid tissue (All), AML, CML, and AML with CML (AML+CML).
Ranking is transformed to negative log scale, so higher ranked genes are at the top. The red
horizontal line corresponds to 10-th ranking.

Hierarchy inference in simulated data

We compared our approach against the other agglomerative clustering approaches introduced
previously in inferring the hierarchy of clusters in the simulated dataset, where a hierarchy
of gene-drug associations exists and is known (Figure 5.2). The resulting dendrograms are
shown in Figure 5.6. Our bipartite graph-based approach was the only method to correctly
infer the true hierarchy presented in Figure 5.2. Both alternate approaches fail to merge
even the most similar groups. Using a p-value of 0.05 as a cutoff to choose clusters, we have
groups 1, 2, 3, and 4 as one cluster, groups 5 and 6 as another cluster, and group 7 as its own
cluster. According to ground truth, groups within each cluster have at least 50% of DRA
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biomarkers in common. As desired, the p-values correlated negatively with the number of
shared biomarkers, with p = 0.13 between groups sharing 30% biomarkers and p = 0.72
between groups that share only 5% of biomarkers.
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Figure 5.6: Comparison of hierarchical clustering approaches in simulated dataset. (A)
Bipartite hierarchical clustering, with p-values after 100 permutations annotated below each
merge point. (B) Baseline method of applying hierarchical clustering to starting group cen-
troids of combined gene expression and drug sensitivity datasets. (C) Hierarchical clustering
to starting group centroids of latent variables Z estimated from iCluster [179].
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5.5 Discussion

Given the importance of tissue of origin for pharmacogenomic models of drug response [46,
161, 186], we developed a bipartite graph-based approach to describe gene-drug associations
where agglomerative clustering can be applied to identify cell line groups with similar gene-
drug associations. This could be helpful in large pharmacogenomic profilings of cell lines
grouped by subtypes of a disease, where it is not obvious how the disease subtypes are
related. To compare edge weight matrices, we introduce a dissimilarity measure based on
the nuclear norm. To merge cell line groups successively, we apply agglomerative clustering
using the nuclear norm-based dissimilarity measure. A subsampling procedure is introduced
to improve dendrogram stability, and significant clusters can be selected with the help of
p-values.

Applying our method to the CCLE dataset [161], we first illustrate that our method
correctly merges cell lines from the same tissue of origin as positive control groups, with p-
values that could be considered significant in the classical statistics setting. In hematopoietic
and lymphoid tissue, our method identified AML and CML as the pair of disease subtypes
with the most similar gene-drug association patterns. The rankings of candidate myeloid
leukemia DRA biomarkers improved significantly when SCCA was run on CML and AML
together as opposed to each group separately. When SCCA was run on hematopoietic and
lymphoid tissue as a group, the rankings of disease-specific genes decreased, and the top
associated drugs changed. Together this highlights the strong influence of cell line selection
on DRA biomarker discovery. When the true hierarchical structure arising from gene-drug
relationships is known from simulation, our method was the only one to uncover the true
hierarchy completely. P-values appeared to grow with the degree with dissimilarity between
merged groups. In our simulation, a p-value cutoff of 0.05 produced groups with at least
50% biomarkers in common. We remark though, that although p-value reflects the degree
of shared gene-drug associations between two groups, the lack of statistical significance (e.g.
p-value ≤ 0.05) does not necessarily imply lack of significant biological relatedness. In
practice, we recommend using p-values along with prior biology knowledge and examination
of candidate DRA biomarkers to decide on which groups to combine or not combine.

Bipartite agglomerative clustering can more generally be applied to identify clusters based
on relationship between any two sets of variables, which in the pharmacogenomic setting
could include genotype, DNA methylation, copy number variation, and other phenotype
variations. In pharmacogenomic studies, our method could be used as the primary means
of identifying groups of cell lines to select for further analysis, or itself be used to identify
candidate DRA biomarkers for a subset of anti-cancer drugs in a subset of cancer cell lines.

The total runtime is mainly contributed by SCCA, the subsampling procedure described
in Algorithm 5.2, and p-value generation described in Algorithm 5.3. Since the subsampling
and permutation steps are independent processes, our implementation provides the option
of parallelizing these steps using the parallel R package for improved runtime. We ran
our clustering method with parallelization on the preprocessed CCLE dataset with 381 cell
lines across 12 primary sites, 791 genomic features, and 16 compounds, using a MacBook
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Pro with 2.4 GHz Quad-Core Intel Core i5 processor with 8 GB of RAM. P-values were
computed (n = 100), and the runtimes ranged from less than 1 hour without subsampling to
less than 2 hours with subsampling (m = 100). While the agglomerative merging algorithm
we implemented merges until one group remains, more time-efficient implementations could
consider early stopping of the merging process for some groups once the corresponding p-
value exceeds a predefined threshold.

Multiple other approaches to the CCA problem exist which could be adapted to our
method. To avoid prohibitively long runtimes from the SCCA implementation by Lee et al.
[172], genomic features are restricted to a smaller subset of features on the order of thousands.
Solari, Brown, and Bickel [187] recently proposed a two-step algorithm which first infers
sparsity before solving for canonical vectors, an approach which reduces the search space
to offer greater computational efficiency. Other CCA approaches serving various purposes
include Bayesian CCA [188], deep neural network-based CCA [189], and kernel CCA [190],
which could substitute the SCCA(·) procedure in Algorithm 5.1.
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Chapter 6

HLA Allele Imputation with Deep
Convolutional Neural Network

6.1 Introduction

The major histocompatibility complex (MHC) harbors the human leukocyte antigen (HLA)
system on chromosome 6p21.3. HLA genes encode cell-surface proteins that present antigen
peptides for recognition by T cells of the host immune system, and are thus among the most
polymorphic genes in the human genome [191]. These genes are of strong epidemiological
interest due to their large effect sizes in autoimmune diseases, infectious diseases, severe drug
reactions, and transplant medicine [192–195].

Direct typing of HLA alleles include sequence specific oligonucleotide hybridization, cap-
illary sequencing, and next-generation sequencing, but these approaches are labor-intensive,
time-consuming, and expensive [196]. Thus, multiple approaches to impute HLA alleles from
single nucleotide polymorphism (SNP) data were developed. These methods include HLA
Genotype Imputation with Attribute Bagging (HIBAG), HLA*IMP:02, and SNP2HLA [71,
197, 198]. A comparison of HLA imputation programs concluded that HIBAG and SNP2HLA
have higher concordance rates than HLA*IMP:02 in European Americans and African Amer-
icans [199]. However, HIBAG performs imputation for each locus independently and thus
cannot impute HLA haplotypes, which may limit its applicability for haplotype association
studies [200, 201]. Since both HIBAG and SNP2HLA combine the phasing and training
stages, usage may incur more time than is necessary when the SNP genotype data are al-
ready phased. SNP2HLA combines all stages of phasing, training, and imputing into one
stage so that entire process has to be repeated for each new SNP genotype dataset to impute.

We present a deep learning approach to HLA imputation using convolutional neural net-
works (CNN). Deep learning is characterized by its high model capacity to fit arbitrarily
complex functions [202]. CNNs have already been successfully applied to a variety of ge-
netic sequence modeling problems, such as DNA-protein binding or chromatin accessibility
prediction [203, 204]. CNNs are effective at modeling genetic sequences by learning to de-
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tect motifs with its convolutional filters, each of which can be thought of as learning some
position weight matrix for a motif [205]. Our multiple input, multiple output CNN accepts
phased haplotypes ±250kb flanking each HLA locus and outputs a probability distribution
over alleles for each locus. In other words, it maps a haplotype of genotypes to a haplotype of
HLA alleles. In this manner, the CNN is able to learn from long range linkage disequilibrium
patterns across HLA loci. The embedding and convolutional layers are shared across loci for
extraction of higher-order features from flanking genotypes, and then CNN branches off as
separate fully-connected layers for each locus. We train and test our model on individuals
of European ancestry from the Type 1 Diabetes Genetics Consortium (T1DGC) [206]. We
report that our CNN has improved imputation accuracy over SNP2HLA while having com-
parable performance with HIBAG, but can take considerably less time when the data has
already been phased.

6.2 Materials and Methods

The T1DGC dataset comprises of 5,225 unrelated individuals of European ancestry, with
phased genotype and HLA allele data. We start with 5,698 SNPs in the genotype data at
the MHC region assayed with the Illumina 550K platform and extract SNPs flanking ±250kb
from each HLA locus as predictive SNPs. HLA alleles were typed for HLA-A, -B, -C, -DQA1,
-DQB1, -DPA1, -DPB1 and −DRB1 at four-digit resolution, totaling 296 distinct alleles. A
total of 109 individuals were removed for not having information for both alleles per HLA
locus, resulting in 5,116 individuals. Details of this dataset are described elsewhere [71, 199,
206].

We tokenize, or split, a haplotype sequence of SNPs corresponding to each HLA locus into
k-mers, with k = 5. For example, tokenization of the haplotype sequence AGTCGATAGCAT
with k = 5 is the process AGTCGATAGCAT → [AGTCG, ATAGC], with the remaining

SNPs that cannot form a complete k-mer at the right end omitted. Let x
(i)
l ∈ Rnl denote

the sequence of nl k-mers corresponding to HLA locus l from haplotype i. Then haplotype
i across all eight HLA loci is denoted

x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
8 ], (6.1)

with corresponding HLA alleles y(i) ∈ R8 at the four-digit resolution. With m individuals,
the dimensions of the dataset are X ∈ R2m×(n1+···+n8) and Y ∈ R2m×8, with each individual
contributing two haplotypes per HLA locus. The goal of HLA imputation is to find f for
the mapping f : X → Y .

Data pre-processing

To encode the input haplotypes, one-hot encoding is applied to nkmer distinct k-mers present
in the training dataset, with the zero vector serving as a placeholder for unobserved k-mers.
One-hot encoding involves assigning a 1-to-1 mapping between each k-mer to a vector of
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length nkmer, with one at the index corresponding to the k-mer and zero elsewhere. For
instance, when k = 1, there are 4 possible k-mers (i.e. A, T, C, G), and the one-hot
encoding for the third k-mer is

[
0 0 1 0

]
.

Since the embedding and convolutional layers are shared between HLA loci, each haplo-
type at a HLA locus x

(i)
l is post-appended with zero vectors to the maximum sequence length

nmax = maxl nl, such that each HLA locus has the same input feature length of nmax. Thus,
the one-hot encoding of a haplotype at HLA locus l has dimensions x

(i)
l ∈ Rnmax×nkmer , where

nmax is the maximum number of k-mers across HLA loci and nkmer is the k-mer encoding
length. Each haplotype i has multiple inputs x

(i)
1 , . . . , x

(i)
8 into the CNN, which imputes HLA

alleles y
(i)
1 , . . . , y

(i)
8 .

Network architecture

The CNN architecture is organized into an embedding layer followed by two convolutional
layers that is shared between HLA loci. After the convolutional layers, the CNN architecture
branches out into separate fully-connected layers for each HLA locus. Overview of the
multiple input, multiple output CNN architecture is presented in Figure 6.1 and details are
outlined below

1. Embedding layer of dimension d = 8.

2. 1D convolution with 64 filters with window size h = 4, stride step size s = 1, ReLU,
1D max-pool over window of size 4.

3. Batch normalization with momentum 0.8, 1D convolution with 64 filters with window
size h = 8, stride step size s = 1, ReLU, 1D max-pool over window of size 4.

4. Flatten activation feature maps, batch normalization with momentum 0.8, and dropout
with probability p = 0.5.

5. Concatenate activation feature maps between neighboring loci.

6. Fully-connected layer with 32 units, ReLU, and dropout with probability p = 0.5.

7. Softmax output layer.

The first layer of the CNN is an embedding layer for learning a representation of each
k-mer such that k-mers associated with same HLA allele have similar representation. Each
k-mer is represented by a real-valued vector of dimensions that is typically much less than
that for one-hot encoded vectors, which have dimension equal to the number of possible
k-mers. The purpose of the embedding layer is to transform sparse high-dimensional input
vectors into dense low-dimensional vectors that may encode similarities between k-mers for
improved learning [207]. This concept has been applied in natural language processing tasks
[208, 209] as well as prediction task for genetic sequences [204]. The embedding layer is a
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learnable matrix of dimension (nkmer+1)×d, where d is the size of the embedding dimension
and nkmer+1 is the number of distinct k-mers plus one for the placeholder zero vector. Each
row ri ∈ Rd of the embedding matrix can be thought of as the learned representation for the
i-th k-mer.

In our CNN architecture, the embedding layer is followed by two convolutional layers.
Each convolutional layer comprises at least the following sequential operations.

1. 1D convolution

2. ReLU nonlinearity

3. Max pooling

The second convolutional layer is preceded by batch normalization. Batch normalization
involves normalizing to each input feature independently to have mean zero and variance
one, where mean and variance estimates are estimated from mini-batches of data used for
stochastic gradient training. To improve representation power of the network, batch normal-
ization also introduces a pair of learnable parameters for scaling and shifting each feature
following normalization. The main purpose of batch normalization is to lead to faster train-
ing that is less sensitive to parameter initialization. Additionally, batch normalization is also
known to have a slight regularization effect [210].
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Figure 6.1: Graphical illustration of CNN architecture for HLA imputation. The k-mer
sequences are first passed through the shared embedding and convolutional layers to compute
intermediate activation feature maps. Activations from neighboring loci are jointly used for
imputation by a full-connected network corresponding to each HLA locus. FC = fully-
connected.

For haplotype i at HLA locus l, omit i, l for clarity and let xj ∈ Rd be the j-th k-mer
vector for haplotype i. The 1D convolution operation involves applying a trainable filter
w ∈ Rh×d to a window of h k-mer vectors to produce a new feature zj = 〈w, xj:j+h−1〉F + b.
Here b ∈ R is a learnable bias term and 〈A,B〉F denotes the Frobenius inner product between
matrices A,B. The filter w is applied against the next window of h k-mers in a sliding window
fashion with a stride step size s. Thus, for haplotype x = [x1:h, x2:h+1, . . . , xnmax−h+1:n], 1D
convolution outputs the intermediate feature vector

z = [z1, z2, . . . , znmax−h+1] (6.2)

with z ∈ Rnmax−h+1. The non-linear ReLU activation function f : R→ R is defined as

f(z) = max(0, z) (6.3)

and is applied to each zi to produce an activation feature ai. Applying 1D convolution on a
window of h k-mers followed by ReLU nonlinearity can be succinctly expressed as
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ai = f(〈w, xi:i+h−1〉F + b) (6.4)

which for nmax input k-mers produces the activation feature vector

a = [a1, a2, . . . , anmax−h+1] (6.5)

with a ∈ Rnmax−h+1. The ReLU activation function is chosen over other non-linearities such
as f(x) = tanh(x) or f(x) = 1/(1 + e−x) because it offers faster training time due to ReLU’s
non-saturating property [211]. Finally, max pooling is applied by retaining the maximum
activation value over non-overlapping windows of size p, reducing the dimension of a by p
and retaining the most important activation feature (i.e. one with largest value in window
h). Refer to Kim [209] for additional details on the 1D convolution layer.

During training, a filter w can be thought of as learning to detect a particular motif
across nmax k-mers. A high activation value ai from filter w is indicative of the presence of a
motif in window i. A convolutional layer learning to detect f different motifs would involve
training f different filters. With f filters, the first convolutional layer would have input and

output dimensions x ∈ Rnmax×d → a ∈ Rb
nmax−h+1

p
c×f . We call this output the activation

feature map. In a deep neural network, multiple such convolutional layers can be stacked,
with the output activation feature map from the previous layer serving as input to the next
layer.

The final portion of our CNN architecture is a fully-connected (FC) layer for final predic-
tion. Following convolution, activation feature maps corresponding each HLA loci a1, . . . a8
are first flattened, then neighboring activations are concatenated according to

a′i :=


[ai−1, ai, ai+1] i ∈ [2, 7]

[ai, ai+1] i = 1

[ai−1, ai] i = 8

(6.6)

so that our CNN can learn from long-range disequilibrium patterns between neighboring
loci. For example, since HLA-DRB1*15:01 and HLA-DQB1*06:02 are strongly linked in
European populations, presence of HLA-DRB1*15:01 is indicative of the presence of HLA-
DQB1*06:02 [212]. The output layer for each HLA locus is a softmax layer that outputs a
probability distribution over alleles. For example, for L possible alleles at a HLA locus, the
softmax function for probability of allele j given input feature activations a ∈ RL is

P (y = j | a) =
eaj∑L
l=1 e

al
. (6.7)

Let q
(i)
j be the predicted probability of the true allele at locus j of the i-th haplotype, then

the target loss function we optimize over is the categorical cross entropy

L(q) = − 1

8m

8∑
j=1

m∑
i=1

log q
(i)
j , (6.8)
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where m is number of haplotypes and q = {q(1), . . . , q(m)} with q(i) ∈ R8.

Regularization

Dropout is applied to the respective activation feature maps feeding into the FC and softmax
layers to prevent overfitting[213]. Dropout involves retaining activation values with some
fixed probability p and zero otherwise, independent of other activation values, with each
forward pass during training. With vector inputs, dropout is implemented with a binary
mask vector u ∈ Rd that is multiplied element-wise with the input

z = W · (a ◦ u) + b, (6.9)

where ◦ denotes element-wise multiplication, W ∈ Rk×d is the trainable weight matrix of
a layer, and b ∈ R is a trainable bias term. Applying dropout during training can be
interpreted as updating weight parameters of a sampled neural networks within the full
neural network. By approximating the process of combining exponentially many different
neural network architectures, dropout prevents overfitting [213]. At test time, each activation
value is multiplied by dropout probability a := pa so that the activation value has the same
expected output in test and training time.

Hyperparameter optimization and training

We partition 70% of individuals for training and model development, and the remaining
individuals for final evaluation. We perform random search over 100 random samples from
the hyperparameters embedding dimension, batch size, number of convolutional filters, filter
stride step size, number of hidden units for the FC layer, max-pooling window, and dropout
probability. Random search is more computationally efficient than exhaustive grid search
and can outperform grid search when only a small number of hyperparameters affect final
model performance [214]. The set of hyperparameters is optimized over 20% of the training
dataset set aside as the validation dataset.

We choose the Adam optimizer for stochastic optimization [215] with a learning rate
0.001 and batch size of 512 haplotypes. During training we apply early stopping when the
loss over the development dataset (10%− 15% of the training dataset) does not improve for
two epochs, or two passes over the entire training dataset.

6.3 Results and discussion

HLA imputation performance

HLA imputation accuracy on the test dataset was comparable to the state of the art per-
formance achieved with SNP2HLA and HIBAG, which are the HLA imputation programs
publicly available to date. Figure 6.2 and Table 6.1 summarize the imputation accuracies
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by imputation program and HLA locus. The overall accuracies for CNN, HIBAG, and
SNP2HLA were 97.6%, 97.5%, and 95.8% respectively. Thus, CNN and HIBAG had the
best and most comparable performance. Either CNN or HIBAG had superior accuracy
over SNP2HLA for every HLA loci. HIBAG out-performed CNN for HLA-A, HLA-B, HLA-
DQA1, and HLA-DQB1. CNN out-performed HIBAG for HLA-C, HLA-DPA1, HLA-DPB1,
and HLA-DRB1.

Table 6.1: Comparison of test imputation accuracy by HLA locus between HLA imputation
methods.

CNN SNP2HLA HIBAG
HLA-A 0.971 0.952 0.978
HLA-B 0.949 0.915 0.958
HLA-C 0.993 0.992 0.992
HLA-DPA1 0.993 0.973 0.989
HLA-DPB1 0.960 0.935 0.955
HLA-DQA1 0.996 0.993 0.997
HLA-DQB1 0.992 0.986 0.993
HLA-DRB1 0.951 0.919 0.938
Overall 0.976 0.958 0.975

HIBAG out-performed CNN the most at locus HLA-B (by about 1%), which is the
most polymorphic gene in our training dataset with 96 alleles. It is possible that HIBAG
is effective for polymorphic genes due to its design as an ensemble classifier that employs
both bootstrap aggregation on individuals and feature bagging on SNPs. However, this does
not necessarily imply that deep learning is less effective for imputation of high polymorphic
genes, since the size of the T1DGC dataset is relatively small compared that in other deep
learning applications.
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Figure 6.2: Comparison of test imputation performance by HLA locus between HLA im-
putation methods. Performance is reported with inaccuracy.

Our CNN presents an advantage in training time over that required by SNP2HLA and
HIBAG when the genotypes are already phased. For HIBAG, 10 classifiers are trained in
parallel over 7 CPU cores for each HLA locus. All training was performed by a Linux
server with four 10-core Intel(R) Xeon(R) CPU E7-4860 processors (running at 2.8 GHz,
with 640KiB/2560KiB/24MiB L1/L2/L3 cache, and using a 64-bit architecture) and a total
of 128 GB RAM. The runtimes are presented in Table 6.2. Both SNP2HLA and HIBAG
perform phasing regardless of whether the input is phased or not, which account for the
longer times required for imputation. The runtime for HIBAG to impute all eight HLA
loci is the longest because imputation is performed separately and independently for each
locus. As a consequence, a limitation of HIBAG is its inability to impute HLA haplotypes.
It should be noted however, that the runtime of HIBAG could be reduced if imputation
for each HLA locus could be performed in parallel. Compared to CNN and HIBAG, which
separates the training and testing procedures, the program SNP2HLA requires repeating the
entire imputation procedure with the reference panel for each test imputation, which could
amount to additional runtime in practice.
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Table 6.2: Comparison of imputation program runtimes. HIBAG was trained with 10 clas-
sifiers over 7 CPU cores per HLA locus and runtime is summed over HLA loci. SNP2HLA
runtime includes test imputation since it combines training and imputation into one pro-
cedure. *Since the runtimes of SNP2HLA and HIBAG include phasing, we also report the
runtime for CNN that includes phasing performed by BEAGLE in brackets [9].

Imputation
program

Training time
(hours)

CNN 0.25(9.6)∗

SNP2HLA 10.5
HIBAG 32.3

We computed approximate error bars for CNN test accuracy per locus to get an estimate
of the variation in imputation accuracy due to variation in test allele frequencies. This is
accomplished by creating B = 1, 000 bootstrap samples (with replacement) from the original
test dataset and computing the test accuracy from the trained CNN for each bootstrap
sample. The distribution of test accuracies are shown in Figure 6.3.

Figure 6.3: Boxplot of bootstrap test accuracies by HLA locus. The upper whisker extends
from the upper hinge (3rd quartile) to the largest value no further than 1.5 the inter-quartile
range (IQR) from the upper hinge. The lower whisker extends from the lower hinge (1st
quartile) to the smallest value at most 1.5 the IQR of the lower hinge.
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The variability in per locus accuracy is correlated with the degree of corresponding poly-
morphism. The number of HLA alleles in the training dataset is 96 for HLA-B, 51 for
HLA-DRB1, 50 for HLA-A, 33 for HLA-DPB1, 31 for HLA-C, 18 for HLA-DQB1, 8 for
HLA-DQA1, and 7 for HLA-DPA1.

Occlusion Analysis

One way to assess what SNPs the CNN might be using to learn the mapping between
phased genotypes to HLA alleles is to perform occlusion analysis, which involves indepen-
dently “masking”, or occluding, a section of SNPs and observing how the probability of the
true HLA allele from the trained model subsequently decreases. The larger the decrease in
probability, the more important the “masked” SNPs are for imputation. Specifically for a
given HLA locus, we successively set 30 k-mers corresponding to the locus to zero at a time,
which removes information from the selected 30 k-mers.

Given we know the tag SNPs for many HLA alleles [216], occlusion analysis can help
us determine to what extent the CNN is using the tag SNPs to impute the correct allele.
For this analysis we selected the HLA alleles HLA-DRB1*15:01, HLA-DRB1*04:01, HLA-
DQB1*03:02, HLA-DQA1*01:02, HLA-B*08:01, and HLA-C*16:01, many for their associa-
tion with autoimmune diseases [217]. The allele HLA-DRB1*15:01 is associated with multi-
ple sclerosis, HLA-DRB1*04:01 is associated with rheumatoid arthritis, HLA-DQB1*03:02
is associated with celiac disease, HLA-DQA1*01:02 is associated with systemic lupus ery-
thematosus, and HLA-B*08:01 is associated with plasma beta-2 microglobulin [217, 218].
Figure 6.4 shows the resulting probability heatmap from occlusion analysis. There is evi-
dence that the CNN learned to impute the alleles HLA-B*08:01, HLA-DQB1*03:02, HLA-
DQA1*01:02, and HLA-DRB1*15:01 based more so on tag SNPs as opposed to other SNPs,
since the drops in probability were largest around the respective tag SNPs. This is especially
true for HLA-DRB1*15:01, where the probability dropped by nearly half when SNP k-mers
in the neighborhood of tag SNP rs3135388 were “masked”.
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Figure 6.4: Occlusion sensitivity analysis for HLA alleles (A) HLA-DRB1*15:01, (B) HLA-
DRB1*04:01, (C) HLA-DQB1*03:02, (D) HLA-DQA1*01:02, (E) HLA-B*08:01, and (F)
HLA-C*16:01. Each panel is a heatmap of true allele probability after blocks of 30 k-mers
were “masked” to zero for a HLA allele, with the rs number of tag SNPs in the title. The
position of the tag SNP is marked with a blue vertical line.

Except for HLA-DRB1*15:01, the drops in probability were mostly minuscule, which shows
that the CNN learned the imputation mapping based also on genetic information other
than what is provided by the tag SNP neighborhood. This suggests that imputation per-
formance by the CNN is robust against genotying errors. For alleles HLA-C*16:01 and
HLA-DRB1*04:01, “masking” the neighborhood of tag SNPs did not result in the largest
decrease in probability. Together, this demonstrates that the CNN learned to impute based
on known associations between SNPs and HLA alleles, but that this was not necessarily the
case for all HLA alleles.

Sensitivity analysis

We perform sensitivity analysis to check the robustness of our CNN architecture against
some hyperparameters, since the hyperparameter tuning process itself is noisy due to random
weight initialization, stochastic optimization, etc. We chose to focus on the hyperparameters
k-mer length k, embedding dimension d, and stride step size s for all convolutional filters f .
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According to Figure 6.5, performance of the CNN is not sensitive to the choices of embed-
ding dimension d and k-mer length k. We tested the embedding dimensions d = 5, 10, 15, 20,
which controls the model complexity due to the embedding layer. We varied the k-mer length
for k = 3, 4, 5, 6, 7, which controls the input dimension to the CNN.

Figure 6.5: Sensitivity analysis of hyperparameters (A) embedding dimension d, (B) con-
volutional filter f stride step size s, and (C) k-mer length k, performed on the test dataset.

However, performance decreased slightly with stride step size s, where step sizes s = 1, 2, 3
were tested. This could be due to the fact that a larger step size s reduces the dimension of
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the activation feature maps more aggressively between layers of the CNN and discards more
information. Thus, the recommended step size for the CNN is s = 1.

6.4 Discussion

We introduce a 1D CNN that simultaneously imputes alleles at the four-digit resolution for
HLA loci HLA-A, -B, -C, -DQA1, -DQB1, -DPA1, -DPB1 and -DRB1 from phased geno-
type data flanking each locus. Genotype data corresponding to each HLA locus are first
tokenized into units of k-mers and one-hot encoded before serving as input to the CNN. The
CNN architecture starts with an embedding layer that learns dense low-dimensional vectors
to represent k-mers from high dimensional one-hot encodings. Following the embedding
layer are two convolutional layers that learn to detect genotype motifs for HLA imputation.
The activation feature maps learned for each locus are concatenated with feature maps of
neighboring loci for final allele imputation using fully-connected networks. The concatena-
tion of neighboring activations allows genotype information corresponding to a HLA locus to
influence imputation of neighboring loci when there exists long-range disequilibrium between
neighboring loci.

Our CNN shares the ability of SNP2HLA to impute HLA allele haplotypes while having
high imputation accuracy comparable to that from HIBAG. Additionally, separation of the
stages of phasing, training, and imputation reduces unnecessary runtime that results from
combining these stages into one. We demonstrate via occlusion sensitivity analysis that CNN
can indeed learn to impute HLA alleles based on known associations between tag SNPs
and HLA alleles, but also that the learned mapping between genotype and HLA allele is
dependent on more than these known associations. The architecture we propose is relatively
robust against the hyperparameters embedding dimension d, stride step size s, and k-mer
length k. We anticipate that the performance of deep learning for HLA imputation will
improve as more SNP and HLA datasets become available.

Although we demonstrate the effectiveness of CNN for imputation of HLA alleles at
the four digit resolution, our CNN can in principle also impute amino acid polymorphisms
in HLA proteins from SNP genotype data. A extension of our work is to explore how
effective deep learning could be for HLA imputation in admixed populations, which are
populations with more than one ancestral populations. A study found that HIBAG was able
to achieve reasonable HLA imputation accuracy in admixed Brazilian population using the
1000 Genomes HLA and SNP dataset [73]. However, a decrease in HLA imputation accuracy
is generally observed in admixed populations compared to that in European populations
[199]. Part of this is due to a partial mismatch between the ancestries present in the reference
population and the population to be imputed, but another could be due to insufficient
conditioning on population substructure and differing linkage disequilibrium patterns at the
MHC between populations. It is known that many HLA alleles are population-specific [219].
One potential approach to take genetic ancestry into consideration is via multi-task deep
learning that learns to map SNP genotype data to both HLA alleles and genetic ancestry.
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A successful application of deep learning for HLA imputation in admixed populations would
likely require careful consideration of network architecture as well as how to take into account
genetic ancestry.
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Chapter 7

Conclusion

This dissertation illustrates both the application and development of statistical and compu-
tational methods in epidemiological and pharmacogenomic studies. Studies in Chapters 2
- 4 apply methods to answer genetic epidemiological questions, and Chapters 5 - 6 contain
studies that develop methods for pharmacogenomic and epidemiological studies.

In Chapter 2, we used multi-dimensional scaling to separate admixed samples into African
Americans, Hispanics, and Asian Americans to perform admixture mapping study for each
group. Using a linear-chain conditional random field implemented by RFMix, we inferred
local ancestry from a reference panel to (1) compare local admixture proportions between
multiple sclerosis (MS) cases and controls, and to (2) study known risk alleles of different
ancestry. In African Americans, cases had increased European ancestry at the class I and
MICB-LST1 regions of the major histocompatibility complex (MHC) compared to controls.
In Asian Americans, cases had decreased European ancestry at the HLA-DQB1 and HLA-
DRB1 loci at the MHC compared to controls. Logistic regression analysis of the prominent
MS risk allele HLA-DRB1*15:01 revealed that the European haplotype conferred three
times the disease risk compared to that on the African haplotype in African Americans.
Lastly, admixture mapping identified a candidate risk locus for MS by revealing a genomic
region near the ZNF596 gene on chromosome 8 where Hispanic cases had significantly higher
proportion of European ancestry compared to controls. All association tests controlled for
global admixture differences between cases and controls.

In Chapters 3, we studied the causal relationship between genetic variation, DNA methy-
lation, and Sjögren’s syndrome (SS) status in labial salivary glands (LSG) of 64 cases and 67
symptomatic non-cases. Specifically, genome-wide DNA methylation profiling was performed
on LSG biopsy samples obtained from 131 female members of the Sjögren’s International
Collaborative Clinical Alliance (SICCA) registry. Bumphunter was used to first identify
differential methylated regions (DMRs), then the causal inference test (CIT) was applied to
find methylation quantitative trait loci (MeQTL) whose effect on SS is mediated by nearby
methylation. DMR analysis yielded 215 DMRs, with the majority located in the MHC on
chromosome 6p21.3. Consistent with what is known, regions hypomethylated in cases were
enriched for gene sets associated with immune processes. Under the CIT, we discovered a
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total of 19 DMR-MeQTL pairs that significantly exhibited a causal mediation relationship.
Close to half of these DMRs were within the region spanning the HLA-DQA1, HLA-DQB1,
and HLA-DQA2 loci at the MHC. The risk conferred by these MeQTLs at the MHC is
further substantiated by a previous large genome-wide association study. Our findings are
significantly relevant to the potential development of targeted epigenetic therapies for SS,
which requires an understanding of the causal relationships between DNA methylation, its
influencing factors, and its implications for SS.

In Chapter 4, we report clinically distinct patient clusters in 64 cases and 67 symp-
tomatic non-cases from cluster analysis of genome-wide DNA methylation data from LSG
tissue. This was performed by applying a variational autoencoder to find a low dimensional
projection of methylation data, followed by hierarchical clustering. We identified four robust
patient clusters that partitioned cases into phenotypically mild and severe subgroups. Com-
pared to mild cases, severe cases have higher genetic risk at the major histocompatibility
complex and tend to experience hypomethylation at genes implicated in immune processes
such as type I interferon response and T cell migration. However, for most phenotypic re-
quirements from the SS classification criteria, the proportions of satisfying patients are not
significantly different between severe and mild cases. These results highlight the effectiveness
of LSG methylation at capturing disease variation and provide a basis for revision of the SS
classification criteria.

In Chapter 5, we present an approach that constructs and compares bipartite graphs
describing gene-drug associations for each group of cell line in a pharmacogenomic dataset.
Specifically, edges between genes and drugs are weighted by the direction and magnitude of
association, which are quantified using sparse canonical correlation analysis (SCCA). We in-
troduce a nuclear norm-based dissimilarity measure to compare graphs from different groups.
Agglomerative clustering is implemented to merge groups from different tissue of origin. To
suggest meaningful clusters, we generate permutation-based p-values for each merge. The
genes highlighted by SCCA serve as candidate drug-response associated biomarkers for as-
sociated drugs. We demonstrate our method in hematopoietic and lymphoid malignancies
from the CCLE dataset that by combining cell lines from acute myeloid leukemia and chronic
myeloid leukemia, more myeloid leukemia-relevant genes surface as top genes associated with
drug response. Additionally, when the hierarchy of relationships is known from simulation,
our method out-performs existing hierarchical clustering-based approaches in correctly in-
ferring true hierarchy.

In Chapter 6, we present deep learning using convolutional neural network (CNN) as a
novel approach to the HLA allele imputation problem at the MHC. In this approach, we use
phased SNP genotype data flanking ±250 kb from each HLA locus to simultaneously im-
pute HLA allele haplotyes across loci HLA-A, -B, -C, -DQA1, -DQB1, -DPA1, -DPB1 and
-DRB1. We split genotype haplotypes into k-mers and learn low-dimensional representations
for each k-mer using an embedding layer of the CNN. Detection of genotype motifs is learned
with convolutional layers and genotype information from neighboring loci are jointly used
for imputation of a given locus to allow learning of long-range disequilibrium across loci.
We show that the CNN learned from known associations between HLA alleles and their tag
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SNPs and the model was robust against a selection of hyperparameters. On the T1DGC
dataset, we show that our CNN achieved 97.6% imputation accuracy, which is comparable
with the best performance achieved with existing HLA imputation methods. By separating
the training and imputation stages, our imputation program can involve less runtime than
existing imputation programs.
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Appendix A

Supplementary Materials for
“Admixture mapping reveals evidence
of differential multiple sclerosis risk
by genetic ancestry”

A.1 Supplementary Materials and Methods

Statistical Analysis

Let p
(i)
d,l(k) denote proportion ancestry k for case individual i at locus l and p

(i)
c,l (k) the same

for control individual i. Then from definition for n cases and m controls
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For computing the test statistic, V ar(z̄d,l(k) − z̄c,l(k)) was calculated with empirical esti-
mates of V ar(pd,l) and V ar(pc,l).

A.2 Supplementary Results

Risk of MS between European and African HLA alleles in African
Americans

HLA Allele OR P-value
DRB1*15:01 3.01 (1.90-4.75) 2.49E−6
DRB1*03:01 0.64 (0.43-0.96) 3.03E−2
A*02:01 0.91 (0.63-1.31) 5.94E−1
DRB1*14:01 0.40 (0.09-1.74) 2.24E−1
B*07:02 1.66 (1.12-2.47) 1.18E−2
A*03:01 1.54 (1.04-2.29) 2.97E−2
C*08:02 0.66 (0.29-1.54) 3.37E−1
C*04:01 1.07 (0.72-1.59) 7.41E−1
C*07:02 1.12 (0.75-1.67) 5.82E−1

Table A.1: Odds ratio (OR) of European HLA allele to African HLA allele as determined
from logistic regression for African American MS-associated alleles, adjusting for first 3 MDS
components. OR are shown with 95% confidence interval and corresponding p-values. HLA
alleles with sample size less than 50 or with predominant ancestry greater than 90% are
excluded from the analysis. Furthermore, alleles not inferred to be completely European or
African are excluded, and only alleles from individuals with one copy are included.
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DRB1-DQB1 Haplotye Case (n) Control (n)
EUR DRB1*15:01-DQB1*06:02 99 142 241
EUR DRB1*15:01-DQB1*X 30 49 79

129 191 320

Table A.2: HLA-DRB1*15:01 haplotypes in African Americans. Two-by-two table of
counts of DRB1*15:01-DQB1 haplotypes where DRB1*15:01 is European and the identity of
the DQB1 allele on the haplotype is summarized. All HLA alleles had allele frequency greater
than 0.005, and only DRB1*15:01 alleles that were completely European were considered.
DQB1*X denotes any DQB1 allele that is not DQB1*06:02, and that there is no restriction
on the ancestry of the DQB1 allele. Note: DQB1 alleles did not pass imputation quality
cutoff of R2 = 0.80.

DRB1-DQB1 Haplotye Case (n) Control (n)
DRB1*X -EUR DQB1*06:02 10 38 48
DRB1*X -AFR DQB1*06:02 137 252 389

147 290 437

Table A.3: European and African HLA-DRB1*06:02 haplotypes in African Americans.
Two-by-two table of counts of DRB1*X–DQB1*06:02 haplotypes where DRB1*X denotes
any allele other than DRB1*15:01. All HLA alleles had allele frequency greater than 0.005,
and only DQB1 alleles that were either completely European or African are considered.
There is no restriction on the ancestry of the DRB1 allele. Note: DQB1 alleles did not pass
imputation quality cutoff of R2 = 0.80.
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Appendix B

Supplementary Materials for
“Hypomethylation of immune genes
mediates methylation quantitative
trait loci at the major
histocompatibility complex in
Sjögren’s Syndrome”

B.1 Supplementary Materials and Methods

Methylotyping and preprocessing

The two primary measures of DNA methylation of each CpG site are β-values and M -
values. A β-value is a ratio of the methylated probe intensity to the sum of methylated
and unmethylated probe intensities, which ranges from 0 to 1, and reflects the proportion
of methylation at a CpG site, and is more interpretable. The M -value can be derived from
a β-value as log2

β
1−β , ranges from −∞ and ∞, and has been the ideal measure to use for

identifying differentially methylated CpG sites due to less severe heteroscedasticity [27].
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Removing unwanted DNA methylation variation

Figure B.1: PCA of preprocessed, β-values prior to batch-correction with ComBat. The
array type (450K or EPIC) for methylotyping is indicated by color. The array types 450K
and EPIC show strong separation on PC2.
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Figure B.2: Multidimensional scaling analysis of 131 SICCA study subjects with HGDP
reference European samples.

Parametric adjustment was used for ComBat because the densities of the additive and mul-
tiplicative batch parameters were neither highly skewed nor bimodal (Figure B.3). Missing
methylation values were mean imputed per CpG site before applying ComBat, then missing-
ness restored after adjustment.
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Figure B.3: Prior plot of kernel estimate of batch effect (black) and parametric estimate
of batch effect (red) from batch correction using ComBat for (A) β-values and (B) M -values.

Dimensionality reduction

Let n and p be the numbers of subjects and CpG sites respectively. Principal component
analysis (PCA) was performed on the centered and scaled β-value matrix X ∈ Rn×p. Missing
values were replaced with per CpG site average before PCA. The symmetric matrix X>X ∈
Rp×p has the eigendecomposition X>X = V ΣV >, where V ∈ Rp×p is an orthogonal matrix.
In PCA, the columns v1, . . . , vp of V specify the optimal orthogonal directions to project
samples onto to preserve variability in the data. Principal component i (PCi) refers to
projections of the n samples onto vi, which we refer to as the i-th principal axis. For
example, PC1 is computed as PC1 = Xv1, which can be seen here as a linear combination of
the CpG site methylation levels in X. The first principal axis v1 thus contains coefficients for
each CpG site, with larger magnitudes indicating greater contribution to PC1. We refer to
the absolute value of entries in v1 as the loadings for PC1, which we analyzed to determine
which CpG sites contributed most to PC1.

Identification of differentially methylated regions

Bootstrap resampling was run with option nullMethod = bootstrap so that adjustment
covariates were controlled for. One of the most important hyperparameters of bumphunter
is the effect size cutoff for defining a candidate differentially methylated region (DMR), where
effect size is the estimated expected change in methylation from one group to the other. In
this study, a cutoff of 1.0 was chosen to achieve a balance between effect size, number of
bumps found, and bump sizes in terms of number of CpG sites (Figure B.4).
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Figure B.4: Number of bumps found for SS and their sizes at different bumphunter coeffi-
cient cutoffs. (A) Violin plot of bump sizes at each cutoff (B) Number of bumps discovered
at each cutoff.

Minfi was used to annotate each DMR with its nearest gene in base pairs, location relative
to nearest gene, and location relative to nearest CpG island. The DMR location relative to
nearest CpG island was set as the majority location of all CpGs that comprise the DMR.
Detailed descriptions of each DMR gene were obtained from the National Center for Biotech-
nology Information.

Gene set enrichment analysis

The gene ontology (GO) gene sets total 5,917, with 4,436 derived from biological process
ontology, 580 derived from cellular component ontology, and 901 derived from molecular
function ontology. Additionally, we included two gene sets consisting of genes shown to
be differentially methylated or differentially expressed respectively, between SS cases and
controls in labial salivary gland (LSG) [104, 130]. We eliminated large gene sets numbering
more than 100 genes, retaining approximately 76% of gene sets.

Mediation analysis with causal inference test

The causal inference test (CIT) consists of statistical tests evaluating the following necessary
and sufficient conditions for the causal mediation model involving genotype “G”, methylation
“M”, and case status “S”,
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1. S ∼ G

2. G ∼M |S

3. M ∼ S|G

4. S ⊥⊥ G|M ,

where “∼” denotes associated with and “⊥⊥” denotes independent of. Condition 1 is tested
with the likelihood ratio test arising from logistic regression in Equation B.1

logit(Si) ∼ β0 + β1Gi1 + β2Gi2 + εi1, (B.1)

with the null and alternative hypotheses as H0 : {β1 = 0, β2 = 0}, H1 : {β1 6= 0, β2 6= 0}.
Condition 2 is tested with the F -test arising from linear regression in Equation B.2

Mi ∼ β0 + β1Si + β2Gi1 + β3Gi2 + εi2, (B.2)

with the null and alternative hypotheses as H0 : {β2 = 0, β3 = 0}, H1 : {β2 6= 0, β3 6= 0}.
Condition 3 is tested with the likelihood ratio test arising from logistic regression in Equation
B.3

logit(Si) ∼ β0 + β1Mi + β2Gi1 + β3Gi2 + εi3, (B.3)

with the null and alternative hypotheses as H0 : β1 = 0, H1 : β1 6= 0. For condition 4, a
proper hypothesis test requires estimating a null distribution under the independence model,
which is defined by the conditions

1. G is causal for M

2. G is causal for S

3. S ⊥⊥M |G

and illustrated in Figure B.5.
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Figure B.5: Independence model. G = genotype; M = methylation; S = Sjögren’s syn-
drome case status.

The test statistic null distribution is generated in the following manner.

1. Simulate M∗ according to marginal effect of G on M , thereby breaking residual de-
pendence between S and M |G.

a) Regression: Mi = β0 + β1Gi1 + β2Gi2 + εi

b) Residuals are randomly permuted to obtain ε∗i , and set M∗
i := β0+β1Gi1+β2Gi2+

ε∗i

2. Fit the following logistic regressions and conduct likelihood ratio test to obtain test
statistic T ∗

• logit(Si) = β0 + β1M
∗
i + β2Gi1 + β3Gi2 + ε

• logit(Si) = β0 + β1M
∗
i + εi

3. Repeat steps 1 - 2 B times to obtain empirical distribution of T ∗ under the null
independence model.

4. Observed test statistic T from logistic regressions with observed Mi against empirical
distribution of T ∗ to obtain p-value.

The CIT was run with default settings for pairs of meQTLs and DMRs whose association
was determined to be significant after multiple hypothesis testing adjustment. The q-value,
or false discovery rate, for a CIT was estimated based on simulating the null CIT outcome by
permuting the relevant variable for each statistical test comprising the CIT, which was done
with n.perm = 100 permutations, as recommended to be sufficient by Millsten et al.[129]
The permutations were specified the same across all tests to account for dependencies among
the tests.
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B.2 Supplementary Results

DNA methylation mediates the effect of MeQTL on SS at the
MHC

Figure B.6: Manhattan plot of genome-wide association study results at the MHC for SS.
Genome-wide association study from Taylor et al.[99], with mediating meQTL p-values from
this study colored in yellow. The red horizontal line indicates genome-wide significance level
from Taylor et al.[99]
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Model OR OR Std Err
95% Confidence

Interval
p-value

rs2734985 0.952 0.071 0.823 - 1.101 0.505
rs2261033 0.875 0.065 0.756 - 1.01 0.072
rs3021302 1.688 0.153 1.413 - 2.015 0.000
rs9275224 1.257 0.117 1.048 - 1.509 0.014
rs9275374 1.066 0.105 0.878 - 1.294 0.519
rs2858332 1.304 0.112 1.102 - 1.544 0.002
constant 0.030 0.006 0.020 - 0.046 0.000

Table B.1: Logistic regression of SS case status against putative MeQTLs at the MHC.
Logistic regression results for all six putative MeQTLs within the MHC, adjusting for first
two European principal components, sex, and smoking status in the European GWAS dataset
from Taylor et al.[99] OR = odds ratio; Std Err = standard error.

B.3 Supplementary Discussion

Figure B.7: Linkage disequilibrium (R2) heatmap of SNPs at the MHC in European pop-
ulations from the 1000 Genomes Project [220], with corresponding density plot of DMR
locations placed at the top and left margins.
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Appendix C

Supplementary Materials for
“Epigenetic stratification identifies
clinically-relevant disease subgroups
in Sjögren’s syndrome with
differential genetic risk at the major
histocompatibility complex”

C.1 Supplementary Materials and Methods



APPENDIX C. SUPPLEMENTARY FOR “EPIGENETIC STRATIFICATION
IDENTIFIES CLINICALLY-RELEVANT DISEASE SUBGROUPS IN SS” 137

Study subjects and clinical evaluation

Variable name Variable description
ana Detection of antinuclear antibody at the 1:40

concentration level
igg Immunoglobulin G (IgG) result
c3 Complement component 3 (C3) result
c4 Complement component 4 (C4) result
ssb Anti-SS-B result
rf Rheumatoid factor result
tbul time Tear break-up time left eye if less than 10 sec-

onds
tbur time Tear break-up time right eye if less than 10

seconds
uws Unstimulated whole salivary flow rate
focus Focus score
ossr Ocular SICCA score right eye
ossl Ocular SICCA score left eye
rparenlg Right parotid gland enlargement
lparenlg Left parotid gland enlargement
drymouth Dry mouth symptoms
liqmouth Need liquids for swallowing
dryeye Dry eye symptoms
lymphoma Physician confirmed lymphoma
GC like formation Presence of germinal center-like formation

tested with H&E staining; only tested in in-
dividuals with focal or focal/sclerosing lym-
phocytic sialendenitis

thyroid Physician confirmed thyroid disease
liver Physician confirmed liver disease
kidney Physician confirmed kidney disease
othersys Physician confirmed other systemic disease
pSS Primary Sjögren’s syndrome case status
bq29 tiredLowEnergy Feeling tired
bq21 painWork During the past 4 weeks, how much did pain

interfere with your normal work (outside and
inside home)?

bq69g painEyes Pain or burning in the middle of the night or
upon waking in the morning

bq22 calmPeaceful Calm and peaceful
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b phq9 deprSeverity PHQ-9 depression severity
bq27 downDepr Feeling down, depressed
bq24 downheartedDepr Down hearted and depressed
bq38 dryvaginal Have you had significant vaginal dryness
bq56 painMouth In the past year, have you avoided eating cer-

tain foods you wanted because they made your
mouth hurt?

Table C.1: Clinical phenotype data key.

Removing unwanted DNA methylation variation

Figure C.1: PCA of β-values without batch-correction. The methylotyping array (i.e.
450K or EPIC) is indicated by color. PC2 captures variation in DNA methylation explained
by array type.
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C.2 Supplementary Results

Identification of patient clusters

Figure C.2: VAE training and validation loss.
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Clinical phenotype analysis by cluster and disease subgroup

Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value
bq29 tiredLowEnergy 2.81 3.00 3.10 2.69 0.446
bq21 painWork 2.85 2.41 2.94 2.69 0.510
bq69g painEyes 2.19 2.35 2.37 2.28 0.980
bq22 calmPeaceful 3.08 2.76 2.83 2.86 0.522
b phq9 deprSeverity 2.15 2.18 2.37 2.03 0.604
bq27 downDepr 1.58 1.53 1.85 1.58 0.523
bq24 downheartedDepr 2.31 2.00 2.48 2.11 0.292
bq38 dryvaginal 0.73 0.71 0.63 0.86 0.140
bq56 painMouth 0.46 0.71 0.33 0.61 0.012

Table C.2: Averages of self-reported SS symptoms, by patient cluster, determined from
VAE-based clustering analysis. P-values were computed using Kruskal-Wallis test for ordinal
or continuous clinical phenotypes, and computed using chi-square test of independence for
categorical or binary phenotypes. Refer to Table C.1 for key of clinical phenotype abbrevi-
ations. Note the average is equivalent to proportion for binary phenotypes.

Figure C.3: Heatmap of self-reported SS symptoms. All phenotypes are either ordinal or
binary, and normalized between 0 and 1, with larger values indicative of greater severity.
Clinical phenotypes are grouped by general categories of dryness, fatigue, pain, anxiety, and
depression. Each column represents a patient and all 131 subjects are grouped by patient
clusters. Gray indicates missingness. See Table C.1 for clinical phenotype key.
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Mild cases Severe cases p-value
bq29 tiredLowEnergy 2.75 2.88 0.65
bq21 painWork 2.67 2.68 0.92
bq69g painEyes 2.78 2.23 0.15
bq22 calmPeaceful 2.79 2.90 0.67
b phq9 deprSeverity 2.00 2.15 0.52
bq27 downDepr 1.54 1.50 1.00
bq24 downheartedDepr 2.25 2.15 0.76
bq38 dryvaginal 0.71 0.73 1.00
bq56 painMouth 0.58 0.58 1.00

Table C.3: Analysis of self-reported SS symptoms, by disease subgroup. Averages of self-
reported SS symptoms for severe cases and mild cases. Severe cases belong to clusters 1 and
2 and mild cases belong to clusters 3 and 4 from the VAE-based clustering analysis. P-values
were computed using Wilcoxon rank sum test for ordinal or continuous clinical phenotypes,
and computed using chi-square test of independence for categorical or binary phenotypes.
Refer to Table C.1 for key of clinical phenotype abbreviations. Note the average is equivalent
to proportion for binary phenotypes.
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Appendix D

Supplementary Materials for
“Bipartite graph-based approach for
clustering of cell lines by gene
expression-drug response
associations”

D.1 Supplementary Materials and Methods

Dissimilarity measure

The nuclear norm for a matrix A of rank r is defined as ||A||∗ =
∑r

i=1 σi(A), where σi is
the i-th singular value of A. If we let σ(A) ∈ Rr denote the vector of singular values, then
||A||∗ = ||σ(A)||1 since σi(A) ≥ 0 for i = 1, . . . , r. Then an upper bound on the nuclear
norm is

||A||∗ = ||σ(A)||1 ≤
√
r||σ(A)||2 =

√
r||A||F , (D.1)

where ||A||F denotes the Frobenius norm of A. The inequality in Equation D.1 comes from
applying Cauchy–Schwarz inequality

||σ(A)||1 = 1>r σ(A) ≤
√
r||σ(A)||2, (D.2)

where 1r ∈ Rr is a vector of ones. The second equality is a consequence of singular value
decomposition (SVD) and commutative property of trace
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||A||F =
√
tr(A>A)

=
√
tr(V >Σ2V )

=
√
tr(Σ2V >V )

=
√
tr(Σ2)

= ||σ(A)||2,

(D.3)

where A has the SVD A = UΣV >.

Agglomerative merging of cell line groups

Empirically, merge dissimilarity generally increases monotonically, but inversions where a
parent group is merged at a lower dissimilarity than its children can still occur. To ensure
height monotonicity for the resulting dendrogram, we define each merge height as the merge
dissimilarity plus maximum height of the two groups. Specifically for two groups u and v
with heights hu and hv respectively, their merge height huv is set as

huv = max{hu, hv}+ d(B[u], B[v]), (D.4)

CCLE dataset

The data preprocessing details are:

1. Removed 8 drugs due to missing values across cell lines

2. Removed 5 cell lines with missing values across drugs

3. Removed 31 cell lines without drug sensitivity measurements

4. Removed genomic features with variance less than 3

5. Removed 77 cell lines from tissue with less than 15 cell lines

Simulation

Additional details on simulating genomic features matrix X ∈ Rn×p and drug responses
matrix Y ∈ Rn×d. The genomic covariance matrix Σ ∈ Rp×p for a given group is generated
as follows:

1. Generate random orthonormal matrix A ∈ Rn×n using randortho(·) function from
pracma R package.
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2. Simulate X̃ ∈ Rn×p as affine combinations of 10 randomly selected columns from A.
Thus, columns of X̃ are highly correlated.

3. Construct initial covariance matrix Σ = X̃>X̃.

4. Reduce cross-covariance terms between biomarker genes and non-biomarker genes, and
between any pair of non-biomarker genes by a factor k = 10. Thus, only biomarker
genes have high covariance terms with each other.
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drome animals”. In: Experimental and Toxicologic Pathology 67.2 (2015), pp. 125–
131.

[98] Bruce Freundlich et al. “A profile of symptomatic patients with silicone breast im-
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Sjögren’s syndrome”. In: Arthritis & Rheumatology 68.12 (2016), pp. 2936–2944.

[105] Nicolas Gestermann et al. “Methylation profile of the promoter region of IRF5 in
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primary Sjögren’s syndrome may be ascribed to infiltrating B cells”. In: Journal of
autoimmunity 41 (2013), pp. 175–181.

[107] OD Konsta et al. “Defective DNA methylation in salivary gland epithelial acini
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[142] Aleksandra Majchrzak-Celińska and Wanda Baer-Dubowska. “Pharmacoepigenetics:
Basic Principles for Personalized Medicine”. In: Pharmacoepigenetics. Elsevier, 2019,
pp. 101–112.

[143] Juliana Imgenberg-Kreuz, Johanna K Sandling, and Gunnel Nordmark. “Epigenetic
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